There has recently been considerable progress of the field of extracellular protein disulfide isomerases with vascular thiol isomerases in the forefront. Four members of protein disulfide isomerase (PDI) family of enzymes, PDI, ERp57, ERp72, and ERp5, have been shown to be secreted from activated platelets and endothelial cells at the site of vascular injury. Each isomerase individually supports platelet accumulation and coagulation, as indicated by multiple levels of evidence, including inhibitory antibodies, targeted knockout mice, and mutant isomerases. The transmembrane PDI family member TMX1 was recently shown to inhibit platelet function and thrombosis, demonstrating that the PDIs can have opposing functions in thrombosis. These observations provide a new concept that thiol isomerases can both positively and negatively regulate hemostasis, constituting off-on redox switches controlling activation of hemostatic factors. This redox network serves to maintain vascular homeostasis. Integrins such as the αIIbβ3 fibrinogen receptor on platelets appear to be major substrates, with the platelet receptor for von Willebrand factor, glycoprotein Ibα, as another substrate. S-nitrosylation of the prothrombotic PDIs may additionally negatively regulate platelets and thrombosis. Thiol isomerases also regulate coagulation in mouse models, and a clinical trial with the oral PDI inhibitor isoquercetin substantially decreased markers of coagulation in patients at risk for thrombosis. This review updates recent findings in the field and addresses emerging evidence that thiol/disulfide-based reactions mediated by the prothrombotic secreted PDIs are balanced by the transmembrane member of this family, TMX1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496414 | PMC |
http://dx.doi.org/10.1111/jth.15019 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2024
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.
Unlabelled: Difficulties exist in obtaining full-length, correctly folded, and soluble papain or papain-like proteases that necessitate the exploration of alternative strategies. This study describes the development of an strain capable of producing soluble papain without the need for complex and time-consuming refolding steps. To enhance the production of soluble papain, engineered T7 promoters and a recombinant papain translationally fused with varying tags were constructed.
View Article and Find Full Text PDFmBio
December 2024
Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA.
Unlabelled: The protein disulfide isomerase (PDI) family is a group of enzymes that have thiol-disulfide oxidoreductase, disulfide isomerase, and redox-dependent chaperone activities. PDIs facilitate diverse infections in mammalian hosts by directly binding to pathogens, immunomodulation, or enabling microbial invasion of host cells. PDI homologs within pathogens are also potential virulence factors.
View Article and Find Full Text PDFJ Thromb Haemost
October 2024
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA. Electronic address:
Background: Protein disulfide isomerase (PDI) is a promising target for combating thrombosis. Extensive research over the past decade has identified numerous PDI-targeting compounds. However, limited information exists regarding how these compounds control PDI activity, which complicates further development.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
A primary precursor of jasmonates, 12-oxo-phytodienoic acid (OPDA), is an autonomous hormone signal that activates and fine-tunes plant defense responses, as well as growth and development. However, the architecture of its signaling circuits remains largely elusive. Here we describe that OPDA signaling drives photosynthetic reductant powers toward sulfur assimilation in the chloroplasts, incorporating sulfide into cysteine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!