Long non-coding RNA is an endogenous non-coding RNA that has currently been proved to be an important player in cancer cell biology. In the present study, we investigated the biological role of PHACTR2-AS1 in tongue squamous cell carcinoma (TSCC). PHACTR2-AS1 was preferentially localized in the cytoplasm, and was notably upregulated in TSCC tissues. High PHACTR2-AS1 was correlated with tumour differentiation, metastatic clinical features, relapse and shortened survival time. Depletion of PHACTR2-AS1 did not affect TSCC cell viability and colony formation ability, whereas substantially inhibited cell migration and invasion in vitro and lung metastasis in vivo. Mechanistically, PHACTR2-AS1 could sponge miR-137 to increase Snail expression, resulting in triggering epithelial-mesenchymal transition process, thereby promoting TSCC cell metastasis. Taken together, our data for the first time elucidate the metastasis-promoting role of PHACTR2-AS1 in TSCC, hinting a new therapeutic target for metastatic TSCC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvaa082DOI Listing

Publication Analysis

Top Keywords

non-coding rna
12
long non-coding
8
tongue squamous
8
squamous cell
8
cell carcinoma
8
role phactr2-as1
8
tscc cell
8
phactr2-as1
7
cell
6
tscc
6

Similar Publications

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Recent research has highlighted widespread dysregulation of alternative polyadenylation in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Here, we identify significant disruptions to 3` UTR polyadenylation in the ALS/FTLD-TDP mouse model rNLS8 that correlate with changes in gene expression and protein levels through the re-analysis of published RNA sequencing and proteomic data. A subset of these changes are shared with TDP-43 knock-down mice suggesting depletion of endogenous mouse TDP-43 is a contributor to polyadenylation dysfunction in rNLS8 mice.

View Article and Find Full Text PDF

Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.

Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.

View Article and Find Full Text PDF

Regulatory role of lnc-MAP3K13-3:1 on miR-6894-3p and SHROOM2 in modulating cellular dynamics in hepatocellular carcinoma.

BMC Cancer

January 2025

Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.

Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.

View Article and Find Full Text PDF

Background: miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-scale biological data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!