Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Clinical criteria for pertussis diagnosis and clinical case definitions for surveillance are based on a cough lasting two or more weeks. As several pertussis cases seek care earlier, a clinical tool independent of cough duration may support earlier recognition. We developed a data-driven algorithm aimed at predicting a laboratory confirmed pertussis.
Methods: We enrolled children <12 months of age presenting with apnoea, paroxistic cough, whooping, or post-tussive vomiting, irrespective of the duration of cough. Patients underwent a RT-PCR test for pertussis and other viruses. Through a logistic regression model, we identified symptoms associated with laboratory confirmed pertussis. We then developed a predictive decision tree through Quinlan's C4.5 algorithm to predict laboratory confirmed pertussis.
Results: We enrolled 543 children, of which 160 had a positive RT-PCR for pertussis. A suspicion of pertussis by a physician (aOR 5.44) or a blood count showing leukocytosis and lymphocytosis (aOR 4.48) were highly predictive of lab confirmed pertussis. An algorithm including a suspicion of pertussis by a physician, whooping, cyanosis and absence of fever was accurate (79.9%) and specific (94.0%) and had high positive and negative predictive values (PPV 76.3% NPV 80.7%).
Conclusions: An algorithm based on clinical symptoms, not including the duration of cough, is accurate and has high predictive values for lab confirmed pertussis. Such a tool may be useful in low resource settings where lab confirmation is unavailable, to guide differential diagnosis and clinical decisions. Algorithms may also be useful to improve surveillance for pertussis and anticipating classification of cases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377414 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236041 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!