Cell-substrate adhesion of the social amoeba Dictyostelium discoideum, a model organism often used for the study of chemotaxis, is non-specific and does not involve focal adhesion complexes. Therefore, micropatterned substrates where adherent Dictyostelium cells are constrained to designated microscopic regions are difficult to make. Here we present a micropatterning technique for Dictyostelium cells that relies on coating the substrate with an ∼1μm thick layer of polyethylene glycol (PEG) gel. We show that, when plated on a substrate with narrow parallel stripes of PEG-gel and glass, Dictyostelium cells nearly exclusive adhere to and migrate along the glass stripes, thus providing a model system to study one-dimensional migration of amoeboid cells. Surprisingly, we find substantial differences in the adhesion to PEG-gel and glass stripes between vegetative and developed cells and between two different axenic laboratory strains of Dictyostelium, AX2 and AX4. Even more surprisingly, we find that the distribution of Dictyostelium cells between PEG-gel and glass stripes is significantly affected by the expression of several fluorescent protein markers of the cytoskeleton. We carry out atomic force microscopy based single cell force spectroscopy measurements that confirm that the force of adhesion to PEG-gel substrate can be significantly different between vegetative and developed cells, AX2 and AX4 cells, and cells with and without fluorescent markers. Thus, the choice of parental background, the degree of development, and the expression of fluorescent protein markers can all have a profound effect on cell-substrate adhesion and should be considered when comparing migration of cells and when designing micropatterned substrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377449 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236171 | PLOS |
Cell Mol Biol Lett
January 2025
Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan.
Heterogeneity is a critical determinant for multicellular pattern formation. Although the importance of microscale and macroscale heterogeneity at the single-cell and whole-system levels, respectively, has been well accepted, the presence and functions of mesoscale heterogeneity, such as cell clusters with distinct properties, have been poorly recognized. We investigated the biological importance of mesoscale heterogeneity in signal-relaying abilities (excitability) in the self-organization of spiral waves of intercellular communications by studying the self-organized pattern formation in a population of Dictyostelium discoideum cells, a classical signal-relaying system model.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
Oscillatory dynamics and their modulation are crucial for cellular decision-making; however, analysing these dynamics remains challenging. Here, we present a tool that combines the light-activated adenylate cyclase mPAC with the cAMP biosensor Pink Flamindo, enabling precise manipulation and real-time monitoring of cAMP oscillation frequencies in Dictyostelium. High-frequency modulation of cAMP oscillations induced cell aggregation and multicellular formation, even at low cell densities, such as a few dozen cells.
View Article and Find Full Text PDFExp Cell Res
January 2025
School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. Electronic address:
Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Excitable systems of eukaryotic chemotaxis can generate asymmetric signals of Ras-GTP-enriched domains spontaneously to drive random cell migration without guidance cues. However, the molecules responsible for the spontaneous signal generation remain elusive. Here, we characterized RasGEFs encoded in Dictyostelium discoideum by live-cell imaging of the spatiotemporal dynamics of Ras-GTP and hierarchical clustering, finding that RasGEFX is primarily required for the spontaneous generation of Ras-GTP-enriched domains and is essential for random migration in combination with RasGEFB/M/U in starved cells, and they are dispensable for chemotaxis to chemoattractant cAMP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!