At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an s-wave SC in a TI can develop an order parameter with a p-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi_{2}Se_{3} proximity coupled to Nb. From depth-resolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi_{2}Se_{3} that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.026802 | DOI Listing |
Nature
September 2023
Department of Physics, Universität Hamburg, Hamburg, Germany.
Gapless materials in electronic contact with superconductors acquire proximity-induced superconductivity in a region near the interface. Numerous proposals build on this addition of electron pairing to originally non-superconducting systems and predict intriguing phases of matter, including topological, odd-frequency, nodal-point or Fulde-Ferrell-Larkin-Ovchinnikov superconductivity. Here we investigate the most miniature example of the proximity effect on only a single spin-degenerate quantum level of a surface state confined in a quantum corral on a superconducting substrate, built atom by atom by a scanning tunnelling microscope.
View Article and Find Full Text PDFNanoscale
May 2023
Department of Electrophysics & Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
We report the observation of enhanced interfacial two-component superconductivity possessing a dominant triplet component in nonmagnetic CoSi/TiSi superconductor/normal-metal planar heterojunctions. This is accomplished through the detection of odd-frequency spin-triplet even-parity Cooper pairs in the diffusive normal-metal component of T-shaped proximity junctions. We show that by modifying the diffusivity of the normal-metal part, the transition temperature enhancement can be tuned by a factor of up to 2.
View Article and Find Full Text PDFSci Adv
March 2023
Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, Netherlands.
BCS theory has been widely successful at describing elemental bulk superconductors. Yet, as the length scales of such superconductors approach the atomic limit, dimensionality as well as the environment of the superconductor can lead to drastically different and unpredictable superconducting behavior. Here, we report a threefold enhancement of the superconducting critical temperature and gap size in ultrathin epitaxial Al films on Si(111), when approaching the 2D limit, based on high-resolution scanning tunneling microscopy/spectroscopy (STM/STS) measurements.
View Article and Find Full Text PDFPhys Rev Lett
December 2022
Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden.
We show that quasiparticle interference (QPI) due to omnipresent weak impurities and probed by Fourier transform scanning tunneling microscopy and spectroscopy acts as a direct experimental probe of bulk odd-frequency superconducting pairing. Taking the example of a conventional s-wave superconductor under applied magnetic field, we show that the nature of the QPI peaks can only be characterized by including the odd-frequency pairing correlations generated in this system. In particular, we identify that the defining feature of odd-frequency pairing gives rise to a bias asymmetry in the QPI, present generically in materials with odd-frequency pairing irrespective of its origin.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
Institut für Halbleiter-und-Festkörperphysik, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria.
A reentrant temperature dependence of the thermoresistivity ρxx(T) between an onset local superconducting ordering temperature Tloconset and a global superconducting transition at T=Tglooffset has been reported in disordered conventional 3-dimensional (3D) superconductors. The disorder of these superconductors is a result of either an extrinsic granularity due to grain boundaries, or of an intrinsic granularity ascribable to the electronic disorder originating from impurity dopants. Here, the effects of Fe doping on the electronic properties of sputtered NbN layers with a nominal thickness of 100 nm are studied by means of low-/high-μ0H magnetotransport measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!