Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For rare events, path probabilities often concentrate close to a predictable path, called instanton. First developed in statistical physics and field theory, instantons are action minimizers in a path integral representation. For chaotic deterministic systems, where no such action is known, shall we expect path probabilities to concentrate close to an instanton? We address this question for the dynamics of the terrestrial bodies of the Solar System. It is known that the destabilization of the inner Solar System might occur with a low probability, within a few hundred million years, or billion years, through a resonance between the motions of Mercury and Jupiter perihelia. In a simple deterministic model of Mercury dynamics, we show that the first exit time of such a resonance can be computed. We predict the related instanton and demonstrate that path probabilities actually concentrate close to this instanton, for events which occur within a few hundred million years. We discuss the possible implications for the actual Solar System.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.021101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!