With ongoing efforts to synthesize super-stable Blatter's diradicals having strong ferromagnetic exchange interactions, all the 10 possible isomers of di-Blatter diradical coupled through the fused benzene rings are investigated. A variety of electronic structure theory such as broken-symmetry methods in density functional theory (DFT), spin-constraint DFT (CDFT), and wave function-based multi-configurational methods, e.g., CASSCF/NEVPT2 are applied to compute the magnetic exchange interactions. Surprisingly, anti-ferromagnetic interactions are revealed for all the stable isomers of di-Blatter diradicals. Indeed, it is commensurate with the experimental observations for the only available synthesized isomer. However, the other nine isomeric diradicals in the series are yet to be synthesized. Despite a good match between theory and experiment, the anti-ferromagnetic exchange interactions could not be explained based on the spin alternation rule due to unique spin distributions in the triazinyl ring. Thus, we propose the zonal spin-alternation rule, which explains the observed ground spin-state for the conjugated di-Blatter diradicals quite accurately. Further, the fractional spin-moment localization on the N-atoms activates multiple exchange pathways and the dominating exchange interactions render anti-ferromagnetic interactions in the conjugated isomers. The study further reveals that, due to strong steric hindrance in certain coupled isomers, the exchange interaction switches from anti-ferromagnetic to weak ferromagnetic interactions with the cost of stabilization energy of the radicals. Thus, it questions the possibility of synthesizing ferromagnetic di-Blatter diradicals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c05719DOI Listing

Publication Analysis

Top Keywords

exchange interactions
16
di-blatter diradicals
12
interactions
8
ferromagnetic interactions
8
fused benzene
8
isomers di-blatter
8
anti-ferromagnetic interactions
8
exchange
6
diradicals
5
plausible ferromagnetic
4

Similar Publications

Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.

J Phys Chem A

January 2025

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.

This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.

View Article and Find Full Text PDF

Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.

View Article and Find Full Text PDF

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!