Small-molecule inhibitors of abnormal protein self-assembly are promising candidates for developing therapy against proteinopathies. Such compounds have been examined primarily as inhibitors of amyloid β-protein (Aβ), whereas testing of inhibitors of other amyloidogenic proteins has lagged behind. An important issue with screening compound libraries is that although an inhibitor suitable for therapy must be both effective and nontoxic, typical screening focuses on efficacy, whereas safety typically is tested at a later stage using cells and/or animals. In addition, typical thioflavin T (ThT)-fluorescence-based screens use the final fluorescence value as a readout, potentially missing important kinetic information. Here, we examined potential inhibitors of superoxide dismutase 1 (SOD1) using ThT-fluorescence including the different phases of fluorescence change and added a parallel screen of SOD1 activity as a potential proxy for compound toxicity. Some compounds previously reported to inhibit other amyloidogenic proteins also inhibited SOD1 aggregation at low micromolar concentrations, whereas others were ineffective. Analysis of the lag phase and exponential slope added important information that could help exclude false-positive or false-negative results. SOD1 was highly resistant to inhibition of its activity, and therefore, did not have the necessary sensitivity to serve as a proxy for examining potential toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903925PMC
http://dx.doi.org/10.1096/fj.202000948RDOI Listing

Publication Analysis

Top Keywords

sod1 aggregation
8
potential toxicity
8
amyloidogenic proteins
8
sod1
5
examination sod1
4
aggregation modulators
4
modulators sod1
4
sod1 enzymatic
4
enzymatic activity
4
activity proxy
4

Similar Publications

Neurological Diseases can be Regulated by Phase Separation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Several neurological diseases arise from abnormal protein aggregation within neurones and this is closely regulated by phase separation. One such is motor neurone disease and aberrant aggregation of superoxide dismutase. Again these events are regulated by electrical forces that are examined.

View Article and Find Full Text PDF

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention.

View Article and Find Full Text PDF

Background: Skeletal muscle atrophy significantly affects quality of life and has socio-economic and health implications. This study evaluates the effects of entacapone (ENT) on skeletal muscle atrophy linked with oxidative stress and proteolysis.

Methods: C2C12 cells were treated with dexamethasone (Dex) to simulate muscle atrophy.

View Article and Find Full Text PDF

Neurodegeneration refers to the gradual loss of neurons and extensive changes in glial cells like tau inclusions in astrocytes and oligodendrocytes, α-synuclein inclusions in oligodendrocytes and SOD1 aggregates in astrocytes along with deterioration in the motor, cognition, learning, and behavior. Common neurodegenerative disorders are Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), spinocerebellar ataxia (SCA), and supranuclear palsy. There is a lack of effective treatment for neurodegenerative diseases, and scientists are putting their efforts into developing therapies against them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!