Shuttling of Peptide-Drug Conjugates by G Protein-Coupled Receptors Is Significantly Improved by Pulsed Application.

ChemMedChem

Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103, Leipzig, Germany.

Published: January 2021

G protein-coupled receptors (GPCRs) can be used to shuttle peptide-drug conjugates into cells. But, for efficient therapy, a high concentration of cargo needs to be delivered. To explore this, we studied the pharmacologically interesting neuropeptide Y receptor (Y R) in one recombinant and three oncogenic cell systems that endogenously express the receptor. We demonstrate that recycled receptors behave identically to newly synthesized receptors with respect to ligand binding and internalization pathways. Depending on the cell system, biosynthesis, recycling efficiency, and peptide uptake differ partially, but shuttling was efficient in all systems. However, by comparing continuous application of the ligand for four hours to four cycles of internalization and recycling in between, a significantly higher amount of peptide uptake was achieved in the pulsed application (150-250 % to 300-400 %). Accordingly, in this well-suited drug shuttle system pulsed application is superior under all investigated conditions and should be considered for innovative, targeted drug delivery in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818256PMC
http://dx.doi.org/10.1002/cmdc.202000490DOI Listing

Publication Analysis

Top Keywords

pulsed application
12
peptide-drug conjugates
8
protein-coupled receptors
8
peptide uptake
8
shuttling peptide-drug
4
conjugates protein-coupled
4
receptors
4
receptors improved
4
improved pulsed
4
application
4

Similar Publications

Stellate ganglion blockade under ultrasound-guidance and the physiological responses in the rat.

Front Physiol

January 2025

Susan Samueli Integrative Health Institute and Department of Medicine, University of California, Irvine, Irvine, CA, United States.

Stellate ganglion blockade (SGB) is a practical approach to managing many clinical disorders. Ultrasound-guided SGB is currently adopted as a more effective and safer method in humans. Developing this technique in rats would facilitate further study of SGB application.

View Article and Find Full Text PDF

Background: Currently, there are no standardized guidelines for graft allocation in heart transplants (HTxs), particularly when considering organs from marginal donors and donors after cardiocirculatory arrest. This complexity highlights the need for an effective risk analysis tool for primary graft dysfunction (PGD), a severe complication in HTx. Existing score systems for predicting PGD lack superior predictive capability and are often too complex for routine clinical use.

View Article and Find Full Text PDF

Background: Pain management in pediatric patients during dental procedures is very important. Here, the traditional method of behavior management is compared with novel methods.

Aim: To compare and determine the effectiveness of an external cooling and vibrating device vs counterstimulation with the conventional technique in reducing the fear and discomfort of pediatric dental patients aged 5-7 years during inferior alveolar nerve block (IANB).

View Article and Find Full Text PDF

Evaluation of charge summing correction in CdTe-based photon-counting detectors for breast CT: performance metrics and image quality.

J Med Imaging (Bellingham)

January 2025

U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.

Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).

Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.

View Article and Find Full Text PDF

In this work, we introduce spatial and chemical saturation options for artefact reduction in magnetic resonance fingerprinting (MRF) and assess their impact on T and T mapping accuracy. An existing radial MRF pulse sequence was modified to enable spatial and chemical saturation. Phantom experiments were performed to demonstrate flow artefact reduction and evaluate the accuracy of the T and T maps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!