Purpose: Motor-evoked potentials (MEPs) are frequently used in pediatric posterior spinal fusion surgery (PSFS) to detect spinal cord ischemia. Dexmedetomidine is increasingly being used as an adjunct to total intravenous anesthesia, but its effect on MEP amplitude has been variably reported. The purpose of this study was to evaluate the effect of an infusion of dexmedetomidine on the amplitude of MEPs.

Methods: We performed a retrospective case-control study of 30 pediatric patients who received a 0.5 µg·kg·hr infusion of dexmedetomidine, ten patients who received 0.3 µg·kg·hr dexmedetomidine, and 30 control patients who did not receive dexmedetomidine during PSFS. Two neurophysiologists reviewed the MEP amplitudes in six muscle groups at three time points: when the patient was turned prone (baseline; T1), one hour after incision (T2), and after exposure of the spine but before insertion of the first screw (T3).

Results: In all muscles tested, the mean MEP amplitude was reduced by T3 when dexmedetomidine was infused at 0.5 µg·kg·hr. The greatest reduction from baseline MEP amplitude was 829 µV (95% confidence interval, 352 to 1230; P < 0.001) seen in first right dorsus interosseous. When dexmedetomidine was infused at 0.3 µg·kg·hr, there was a significant reduction in MEP amplitude in four of the six muscles tested at T3 compared with the control group.

Conclusions: Dexmedetomidine at commonly used infusion rates of 0.3 µg·kg·hr or 0.5 µg·kg·hr causes a significant decrease in MEP amplitude during pediatric PSFS. We suggest that dexmedetomidine should be avoided in children undergoing PSFS so as not to confuse the interpretation of this important neurophysiological monitor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12630-020-01758-6DOI Listing

Publication Analysis

Top Keywords

mep amplitude
20
dexmedetomidine
10
motor-evoked potentials
8
pediatric posterior
8
posterior spinal
8
spinal fusion
8
fusion surgery
8
retrospective case-control
8
case-control study
8
infusion dexmedetomidine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!