The effect of temperature on insect-plant interactions in the face of changing climate is complex as the plant, its herbivores and their interactions are usually affected differentially leading to an asymmetry in response. Using experimental warming and a combination of biochemical and herbivory bioassays, the effects of elevated temperatures and herbivore damage (Helicoverpa zea) on resistance and tolerance traits of Solanum lycopersicum var. Better boy (tomato), as well as herbivory performance and salivary defense elicitors were examined. Insects and plants were differentially sensitive towards warming within the experimental temperature range. Herbivore growth rate increased with temperature, whereas plants growth as well as the ability to tolerate stress measured by photosynthesis recovery and regrowth ability were compromised at the highest temperature regime. In particular, temperature influenced the caterpillars' capacity to induce plant defenses due to changes in the amount of a salivary defense elicitor, glucose oxidase (GOX). This was further complexed by the temperature effects on plant inducibility, which was significantly enhanced at an above-optimum temperature; this paralleled with an increased plants resistance to herbivory but significantly varied between previously damaged and undamaged leaves. Elevated temperatures produced asymmetry in species' responses and changes in the relationship among species, indicating a more complicated response under a climate change scenario.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467972 | PMC |
http://dx.doi.org/10.1007/s10886-020-01201-6 | DOI Listing |
Trop Anim Health Prod
January 2025
School of Molecular Diagnostics, Prophylaxis, and Nanobiotechnology, ICAR- Indian Institute of Agricultural Biotechnology, Garkhtanga, Ranchi, 834003, Jharkhand, India.
Climate change poses significant challenges to livestock production worldwide. Wherein, it affects communities in developing nations primarily dependent on agriculture and animal husbandry. Its direct and indirect deleterious effects on agriculture and animal husbandry includes aberrant changes in weather patterns resulting in disturbed homeorhetic mechanism of livestock vis a vis indirectly affecting nutrient composition of feed and fodder.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil Engineering, University of Qom, Qom, Iran.
In this study, the water-energy nexus is investigated throughout coupling the Water Evaluation and Planning (WEAP) and Low Emission Analysis Platform (LEAP) models under the climate change effects in the Marun basin, Iran. For this purpose, first, the climate change effects on water resources and consumption nodes are calculated under representative concentration pathway (RCP) scenarios from the fifth report of the International Panel on Climate Change (IPCC). Artificial neural network (ANN) is used to model river inflow and Cropwat model is used for agricultural water demand in future time (2015-2040).
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou, 510642, China.
Integration of resistance indicators, metabolomes, and transcriptomes to elucidate that there is a positive correlation between disease susceptibility and cold tolerance in tea plants. The flavonoid pathway was found to be the major metabolic and transcriptional enrichment pathway. A key domain NB-ARC was identified through joint analysis, along with analysis of key domains within the NB-ARC protein.
View Article and Find Full Text PDFJ Public Health Manag Pract
January 2025
Department of Environmental Medicine and Public Health (Mr Bland, Dr Zajac, Ms Guel, Dr Pendley, Dr Galvez, Dr Sheffield), Icahn School of Medicine at Mount Sinai, New York, New York; Harvard Kenneth C. Griffin Graduate School of Arts and Sciences (Mr Wilson), Boston, Massachusetts; Environmental Research and Translation for Health (EaRTH) Center (Ms Charlesworth), University of California, San Francisco, California; Community Engagement Core, Environmental Health Sciences Center at Department of Environmental Medicine (Dr Korfmacher), University of Rochester Medical Center, Rochester, New York; Pediatric Environmental Health and Cincinnati Children's Hospital Medical Center (Dr Newman), Cincinnati, Ohio; Philadelphia Regional Center for Children's Environmental Health, Center of Excellence in Environmental Toxicology, Perelman School of Medicine (Dr Howarth), University of Pennsylvania, Philadelphia, Pennsylvania; and Division of Academic General Pediatrics, Children's Hospital at Montefiore (Dr Balk), Albert Einstein College of Medicine, Bronx, New York.
The integration of environmental health (EH) into routine clinical care for children is in its early stages. The vision of pediatric EH is that all clinicians caring for children are aware of and able to help connect families to needed resources to reduce harmful environmental exposures and increase health-enhancing ones. Environmental exposures include air pollution, substandard housing, lead, mercury, pesticides, consumer products chemicals, drinking water contaminants, industrial facility emissions and, increasingly, climate change-related extreme weather and heat events.
View Article and Find Full Text PDFJ Am Coll Cardiol
January 2025
Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, LMU Munich, Munich, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!