A novel magnetically recyclable bimetallic catalyst was prepared by anchoring imidazolium moiety and PEG chains on Fe3O4 NPs and named as Fe3O4@PEG/Cu-Co. It was found to be a powerful catalyst for the Sonogashira, Suzuki, and C-N cross-coupling reactions in water as a green solvent without the need for any external base. Fe3O4@PEG/Cu-Co was well characterized with FT-IR, FE-SEM, TEM, VSM, EDX, ICP, UV-visible, CV, and XPS analyses. Optimum ranges of parameters such as time, temperature, and amount of catalyst were investigated by Design-Expert 10.0.7 software for C-C Suzuki, Sonogashira, and C-N cross-coupling reactions to find the optimum conditions. The catalyst was compatible with a variety of aryl halides and N-arenes and gave favorable coupling products with good to high yields for all of them. Hot filtration and Hg poisoning tests involving the nanocatalyst revealed the stability, low metal leaching, and heterogeneous nature of the catalyst. Reaction mechanisms were proposed by study of the UV-visible spectra in situ as well as hydroquinone tests during the progress of reactions. In situ XPS analysis was also used to study the reaction mechanism. To prove the synergistic performance of Co and Cu in the catalyst, its various homologues were synthesized and applied to a model reaction separately, and then their catalytic activities were investigated. Finally, the catalyst could be recovered from the reaction mixture simply, and reused for several cycles with a minimum loss in catalytic activity and performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0dt01846e | DOI Listing |
Nat Commun
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.
3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.
View Article and Find Full Text PDFChemistryOpen
November 2024
Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-, 15782, Santiago de Compostela, Spain.
Chemistry
November 2024
Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
The aryloxyamine motif is a prominent pharmacophore in drug design and development. While these biologically relevant structures could in principle be sustainably assembled from the base metal-catalyzed O-arylation of inexpensive and abundant amino alcohols with (hetero)aryl chlorides, reports of such challenging C-O bond formations with useful scope are lacking. In response, we report herein the hitherto unknown Ni-catalyzed C-O cross-coupling of N-protected amino alcohols (primary, secondary, and tertiary) with (hetero)aryl chlorides.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster.
Despite the prominence of C-N bond forming cross-coupling reactions as a strategy to assemble molecular fragments, aminative coupling approaches, in which two fragments are assembled directly at the heteroatom, represents a rarely exploited retrosynthetic strategy. Herein, we report the design, synthesis, and implementation of an anomeric amide reagent capable of promoting highly regioselective aminative alkene-arene and alkene-alkene coupling reactions. This transformation follows a sequence of catalyst-free chloroamination, N-deprotection, and formal nitrene functionalization, all in one-pot.
View Article and Find Full Text PDFJ Org Chem
December 2024
Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States.
A simple protocol for the Buchwald-Hartwig cross-coupling of (hetero)aryl halides with unprotected aminoglutarimide to afford diverse cereblon binding motifs is disclosed. The development of this C-N cross-coupling method was enabled by high-throughput combinatory screening of solvents, bases, temperatures, and ligands. Scope studies revealed generality across various heteroaryl and aryl halides with the reaction proceeding under mild conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!