Background: Patients at high risk of severe forms of COVID-19 frequently suffer from chronic diseases, but other risk factors may also play a role. Environmental stressors, such as endocrine disrupting chemicals (EDCs), can contribute to certain chronic diseases and might aggravate the course of COVID-19.

Objectives: To explore putative links between EDCs and COVID-19 severity, an integrative systems biology approach was constructed and applied.

Methods: As a first step, relevant data sets were compiled from major data sources. Biological associations of major EDCs to proteins were extracted from the CompTox database. Associations between proteins and diseases known as important COVID-19 comorbidities were obtained from the GeneCards and DisGeNET databases. Based on these data, we developed a tripartite network (EDCs-proteins-diseases) and used it to identify proteins overlapping between the EDCs and the diseases. Signaling pathways for common proteins were then investigated by over-representation analysis.

Results: We found several statistically significant pathways that may be dysregulated by EDCs and that may also be involved in COVID-19 severity. The Th17 and the AGE/RAGE signaling pathways were particularly promising.

Conclusions: Pathways were identified as possible targets of EDCs and as contributors to COVID-19 severity, thereby highlighting possible links between exposure to environmental chemicals and disease development. This study also documents the application of computational systems biology methods as a relevant approach to increase the understanding of molecular mechanisms linking EDCs and human diseases, thereby contributing to toxicology prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373141PMC
http://dx.doi.org/10.1101/2020.07.10.20150714DOI Listing

Publication Analysis

Top Keywords

systems biology
12
covid-19 severity
12
endocrine disrupting
8
disrupting chemicals
8
computational systems
8
biology approach
8
chronic diseases
8
signaling pathways
8
edcs
7
covid-19
6

Similar Publications

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics.

Biomark Res

January 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.

Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored.

View Article and Find Full Text PDF

The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max).

View Article and Find Full Text PDF

Integration of human papillomavirus (HPV) into the host genome drives HPV-positive head and neck squamous cell carcinoma (HPV HNSCC). Whole-genome sequencing of 51 tumors revealed intratumor heterogeneity of HPV integration, with 44% of breakpoints subclonal, and a biased distribution of integration breakpoints across the HPV genome. Four HPV physical states were identified, with at least 49% of tumors progressing without integration.

View Article and Find Full Text PDF

Integration of various types of omics data is an important trend in contemporary molecular oncology. In this regard, high-throughput analysis of trace and essential elements in cancer biosamples is an emerging field that has not yet been sufficiently addressed. For the first time, we simultaneously obtained gene expression profiles (RNA sequencing) and essential and trace element profiles (inductively coupled plasma mass spectrometry) for a set of human cancer samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!