Background: Diabetes mellitus is one of the leading causes of morbidity resulting in multi-organ dysfunction. Animal studies have shown that hyperglycemia results in stress-induced senescence through the p16-pRb pathway, thereby accelerating early disc degeneration. There is a paucity of literature on the effect of hyperglycemia in human intervertebral disc cells. We aimed to analyze the effect of diabetes mellitus in human intervertebral disc cells.
Methods: This is a prospective study done in patients with degenerative disc disease. Patients were categorized into a control group (no diabetes: 26 patients) and a study group (type 2 diabetes for > 3 years: 24 patients). All patients underwent either discectomy or transforaminal lumbar interbody fusion and the removed disc was transported to pathology department. Tissue was prepared and histopathological grading was done followed by immunohistochemistry studies using antibodies for MMP-1, p21, p16, and pRb.
Results: Samples from diabetic patients had severe (grade 2) degenerative changes compared with the control group (grade 1). Changes were more intense in the nucleus pulposus with increased cellularity and clustering of chondrocytes, and disorganization and loss of nuclear matrix. Immunohistochemical staining for MMP1, p16, and pRb was more intense (Q score = 4) whereas the staining for p21 was less intense (Q score = 1) in the diabetic group compared with the control group.
Conclusion: Our study demonstrates that type 2 diabetes mellitus accelerates stress-induced senescence in human intervertebral discs resulting in early disc degeneration. Also, the severity of disc degeneration is severe compared with the normal subjects.
Clinical Relevance: Hyperglycemia can affect the intervertebral discs similar to other organs and hence adequate control of blood glucose in diabetics can prevent the disc degeneration, which is the initiator of degeneration cascade in spine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343256 | PMC |
http://dx.doi.org/10.14444/7045 | DOI Listing |
This study aimed to delineate trends in intervertebral disc degeneration among Mexican patients, specifically focusing on the distribution and correlation between BMI and Pfirrmann classification results within the Mexican population. Conducted using the public health database of Mexico City. The study involved 51 patients sampled via convenience sampling, with exclusive utilization of internal MRI data from L4-L5 and L5-S1 discs.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China.
Background: Intervertebral disc degeneration (IVDD) stands as a primary pathophysiological driver of low back pain, yet no therapeutic intervention effectively arrests its progression. Evidence shows that certain Sirt1 agonists may confer protective effects on intervertebral discs, but the underlying mechanisms remain unclear. This study aims to delineate the interaction between Sirt1 and the inflammatory microenvironment, offering potential novel avenues for IVDD prevention and treatment.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China. Electronic address:
Background: Nucleus pulposus (NP) degeneration represents a significant contributing factor in the pathogenesis of intervertebral disc (IVD) degeneration (IVDD), and is a key underlying mechanism in several lumbar spine pathologies. Nevertheless, the precise mechanisms that govern NP degeneration remain unclear. A significant contributing factor to IVDD has been identified as ferroptosis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.
Demographic aging and extended working lives have prompted interest in the physiological changes that occur with age, particularly in the lumbar spine. Age-related declines in muscle quality and intervertebral disc alterations may reduce muscular endurance, strength, and postural stability, potentially increasing the risk of musculoskeletal injuries in older workers. As experienced workers play an important role in addressing labor shortages, understanding the impact of age-related physiological changes on the biomechanical properties of the lumbar spine is key to ensure safe and sustainable employment for aging individuals.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!