Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Shear experiments on soils have revealed the effects of shear rate, confining pressure, and grain size on the residual shear strength, but their nature is not well understood. To interpret these behaviours, a single dimensionless inertial number I from granular physics is introduced. A linear relationship between coefficient of residual friction μ and the natural logarithm of I was found by analysing geotechnical test data from other literature and helps to resolve the μ(aI)-rheology, which was proved invalid in the quasi-static regime. A method is proposed that introduces two three-dimensional yield criteria for soils to classify the frictional properties between grains in the quasi-static regime. The empirical coefficient of start-up friction is replaced by strength parameters of the soil. When compliant with the Mohr-Coulomb yield criterion, this coefficient is positively correlated with the internal angle of friction but negatively correlated with the Lode angle. Moreover from further analysis, the calculated strength is smallest in the pure tension state, largest in the pure compression state, and intermediate in the pure shearing state. This result is consistent with the properties of compressive endurable and tensive intolerable for natural geomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376163 | PMC |
http://dx.doi.org/10.1038/s41598-020-69023-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!