Viral subversion of nonsense-mediated mRNA decay.

RNA

Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA.

Published: November 2020

Viruses have evolved in tandem with the organisms that they infect. Afflictions of the plant and animal kingdoms with viral infections have forced the host organism to evolve new or exploit existing systems to develop the countermeasures needed to offset viral insults. As one example, nonsense-mediated mRNA decay, a cellular quality-control mechanism ensuring the translational fidelity of mRNA transcripts, has been used to restrict virus replication in both plants and animals. In response, viruses have developed a slew of means to disrupt or become insensitive to NMD, providing researchers with potential new reagents that can be used to more fully understand the NMD mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566565PMC
http://dx.doi.org/10.1261/rna.076687.120DOI Listing

Publication Analysis

Top Keywords

nonsense-mediated mrna
8
mrna decay
8
viral subversion
4
subversion nonsense-mediated
4
decay viruses
4
viruses evolved
4
evolved tandem
4
tandem organisms
4
organisms infect
4
infect afflictions
4

Similar Publications

A new hypothesis to explain disease dominance.

Trends Genet

January 2025

Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany. Electronic address:

The onset and progression of dominant diseases are thought to result from haploinsufficiency or dominant negative effects. Here, we propose transcriptional adaptation (TA), a newly identified response to mRNA decay, as an additional cause of some dominant diseases. TA modulates the expression of so-called adapting genes, likely via mRNA decay products, resulting in genetic compensation or a worsening of the phenotype.

View Article and Find Full Text PDF

Chemical inhibition of eIF4A3 abolishes UPF1 recruitment onto mRNA encoding NMD factors and restores their expression.

Biochem Biophys Res Commun

December 2024

Université Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France. Electronic address:

Nonsense-Mediated mRNA Decay (NMD) is a key control mechanism of RNA quality widely described to target mRNA harbouring Premature Termination Codon (PTC). However, recent studies suggested the existence of non-canonical pathways which remain unresolved. One of these alternative pathways suggested that specific mRNA could be targeted through their 3' UTR (Untranslated Region), which contain various elements involved in mRNA stability regulation.

View Article and Find Full Text PDF

The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells.

View Article and Find Full Text PDF

Pre-mRNA splicing, carried out in the nucleus by a large ribonucleoprotein machine known as the spliceosome, is functionally and physically coupled to the mRNA surveillance pathway in the cytoplasm called nonsense mediated mRNA decay (NMD). The NMD pathway monitors for premature translation termination signals, which can result from alternative splicing, by relying on the exon junction complex (EJC) deposited on exon-exon junctions by the spliceosome. Recently, multiple genetic screens in human cell lines have identified numerous spliceosome components as putative NMD factors.

View Article and Find Full Text PDF

SUMOylation involves covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on target proteins and regulates various aspects of their function. Sentrin-specific proteases (SENPs) are key players in both the conjugation reaction of SUMO proteins to their targets and the subsequent deconjugation of SUMO-conjugated substrates. Here, we provide the first comprehensive prenatal description of a lethal syndrome linked to a novel homozygous stop-gain variant in SENP7 c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!