Historically, some of the first cell-free protein expression systems studied translation in various human blood cells. However, because of limited knowledge of eukaryotic translation and the advancement of cell line development, interest in these systems decreased. Eukaryotic translation is a complex system of factors that contribute to the overall translation of mRNA to produce proteins. The intracellular translateome of a cell can be modified by various factors and disease states, but it is impossible to individually measure all factors involved when there is no comprehensive understanding of eukaryotic translation. The present work outlines the use of a coupled transcription and translation cell-free protein expression system to produce recombinant proteins derived from human donor peripheral blood mononuclear cells (PBMCs) activated with phytohemagglutinin-M (PHA-M). The methods outlined here could result in tools to aid immunology, gene therapy, cell therapy, and synthetic biology research and provide a convenient and holistic method to study and assess the intracellular translation environment of primary immune cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.0c00256 | DOI Listing |
J Mol Med (Berl)
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
The inhibition of human microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is a promising therapeutic modality for developing next-generation anti-inflammatory medications. In this study, we present novel 2-phenylbenzothiazole derivatives featuring heteroaryl sulfonamide end-capping substructures as inhibitors of human mPGES-1, with IC values in the range of 0.72-3.
View Article and Find Full Text PDFMutat Res Rev Mutat Res
January 2025
Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.
Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.
View Article and Find Full Text PDFEnzyme Microb Technol
January 2025
Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea. Electronic address:
Cell-free enzyme systems have emerged as a promising approach for producing various biometabolites, offering several advantages over traditional whole-cell systems. This study presents an approach to producing nicotinamide mononucleotide (NMN) by combining a Saccharomyces cerevisiae cell-free enzyme with a recombinant Escherichia coli cell-free enzyme. The system leverages the ATP generated by yeast during ethanol fermentation to produce NMN in the presence of nicotinamide (NAM) as a substrate.
View Article and Find Full Text PDFBioanalysis
January 2025
Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China.
Background: Circulating tumor DNA (ctDNA) is a promising biomarker for cancer prognosis and drug development. A major challenge in the ctDNA determination method is discriminating ctDNA from highly similar but significantly more abundant wild-type DNA sensitively and accurately.
Method: An ultrasensitive qPCR method termed Triple Enrichment Amplification of Mutation PCR (TEAM-PCR) was developed to detect EGFR T790M mutation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!