A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wi-SL: Contactless Fine-Grained Gesture Recognition Uses Channel State Information. | LitMetric

Wi-SL: Contactless Fine-Grained Gesture Recognition Uses Channel State Information.

Sensors (Basel)

College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China.

Published: July 2020

In recent years, with the development of wireless sensing technology and the widespread popularity of WiFi devices, human perception based on WiFi has become possible, and gesture recognition has become an active topic in the field of human-computer interaction. As a kind of gesture, sign language is widely used in life. The establishment of an effective sign language recognition system can help people with aphasia and hearing impairment to better interact with the computer and facilitate their daily life. For this reason, this paper proposes a contactless fine-grained gesture recognition method using Channel State Information (CSI), namely Wi-SL. This method uses a commercial WiFi device to establish the correlation mapping between the amplitude and phase difference information of the subcarrier level in the wireless signal and the sign language action, without requiring the user to wear any device. We combine an efficient denoising method to filter environmental interference with an effective selection of optimal subcarriers to reduce the computational cost of the system. We also use K-means combined with a Bagging algorithm to optimize the Support Vector Machine (SVM) classification (KSB) model to enhance the classification of sign language action data. We implemented the algorithms and evaluated them for three different scenarios. The experimental results show that the average accuracy of Wi-SL gesture recognition can reach 95.8%, which realizes device-free, non-invasive, high-precision sign language gesture recognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412096PMC
http://dx.doi.org/10.3390/s20144025DOI Listing

Publication Analysis

Top Keywords

gesture recognition
20
sign language
20
contactless fine-grained
8
fine-grained gesture
8
channel state
8
language action
8
gesture
6
recognition
6
sign
5
language
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!