Residual strength of corroded textile-reinforced concrete (TRC) is evaluated using the deep learning-based method, whose feasibility is demonstrated by experiment. Compared to the traditional method, the proposed method does not need to know the climatic conditions in which the TRC exists. Firstly, the information about the faster region-based convolutional neural networks (Faster R-CNN) is described briefly, and then procedures to prepare datasets are introduced. Twenty TRC specimens were fabricated and divided into five groups that were treated to five different corrosion degrees corresponding to five different residual strengths. Five groups of images of microstructure features of these TRC specimens with five different residual strengths were obtained with portable digital microscopes in various circumstances. With the obtained images, datasets required to train, validate, and test the Faster R-CNN were prepared. To enhance the precision of residual strength evaluation, parameter analysis was conducted for the adopted model. Under the best combination of considered parameters, the mean average precision for the residual strength evaluation of the five groups of the TRC is 98.98%. The feasibility of the trained model was finally verified with new images and the procedures to apply the presented method were summarized. The paper provides new insight into evaluating the residual strength of structural materials, which would be helpful for safety evaluation of engineering structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411988 | PMC |
http://dx.doi.org/10.3390/ma13143226 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!