We propose to improve the visual object tracking by introducing a soft mask based low-level feature fusion technique. The proposed technique is further strengthened by integrating channel and spatial attention mechanisms. The proposed approach is integrated within a Siamese framework to demonstrate its effectiveness for visual object tracking. The proposed soft mask is used to give more importance to the target regions as compared to the other regions to enable effective target feature representation and to increase discriminative power. The low-level feature fusion improves the tracker robustness against distractors. The channel attention is used to identify more discriminative channels for better target representation. The spatial attention complements the soft mask based approach to better localize the target objects in challenging tracking scenarios. We evaluated our proposed approach over five publicly available benchmark datasets and performed extensive comparisons with 39 state-of-the-art tracking algorithms. The proposed tracker demonstrates excellent performance compared to the existing state-of-the-art trackers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412361PMC
http://dx.doi.org/10.3390/s20144021DOI Listing

Publication Analysis

Top Keywords

soft mask
16
mask based
12
feature fusion
12
spatial attention
12
visual object
12
object tracking
12
channel spatial
8
low-level feature
8
proposed approach
8
tracking
5

Similar Publications

Droplet microfluidics enable high-throughput screening, sequencing, and formulation of biological and chemical systems at the microscale. Such devices are generally fabricated in a soft polymer such as polydimethylsiloxane (PDMS). However, developing design masks for PDMS devices can be a slow and expensive process, requiring an internal cleanroom facility or using an external vendor.

View Article and Find Full Text PDF

Optimization of Soft X-Ray Fresnel Zone Plate Fabrication Through Joint Electron Beam Lithography and Cryo-Etching Techniques.

Nanomaterials (Basel)

November 2024

Nanotechnology Group, USAL-Nanolab, Departamento de Física Fundamental, Universidad de Salamanca (USAL), E-37008 Salamanca, Spain.

The ability to manufacture complex 3D structures with nanometer-scale resolution, such as Fresnel Zone Plates (FZPs), is crucial to achieve state-of-the-art control in X-ray sources for use in a diverse range of cutting-edge applications. This study demonstrates a novel approach combining Electron Beam Lithography (EBL) and cryoetching to produce silicon-based FZP prototypes as a test bench to assess the strong points and limitations of this fabrication method. Through this method, we obtained FZPs with 100 zones, a diameter of 20 µm, and an outermost zone width of 50 nm, resulting in a high aspect ratio that is suitable for use across a range of photon energies.

View Article and Find Full Text PDF

Objective: Cleft lip and palate are the most common congenital malformations in the craniofacial region, occurring at a rate of 1:700 births in Brazil. These conditions lead to functional impacts on patients, such as changes in breathing, teeth, speech, chewing, swallowing and sucking. Treatment begins with primary surgeries, including lip and palate repair, which aim to reconstruct the soft tissues.

View Article and Find Full Text PDF

X-ray imaging is becoming more commonplace for inline industrial inspection, where a sample placed on a conveyor belt is translated through a scanning setup. However, the conventional X-ray attenuation contrast is often insufficient to characterize soft materials such as polymers and carbon reinforced components. Edge illumination (EI) is an X-ray phase contrast imaging technique that provides complementary differential phase and dark field contrasts, next to attenuation contrast.

View Article and Find Full Text PDF

A study to determine the three-dimensional (3D) facial shape characteristics for a successful FFP3 mask fit.

Sci Rep

November 2024

Department of Orthodontics, The School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Birmingham, B5 7EG, UK.

A reported 20% of dental staff will fail their fit test for a disposable FFP3 respirator. This needs to be factored into future pandemic workforce and PPE supply planning. At present there are no scientifically or universally accepted facial shape criteria to design and produce facial masks that will fit the entire work force.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!