Timely adjustment of osmoregulation upon acute salinity stress is essential for the survival of euryhaline fish. This rapid response is thought to be tightly controlled by hormones; however, there are still questions unanswered. In this work, we tested the hypothesis that the endocrine hormone, insulin-like growth factor 1 (Igf1), a slow-acting hormone, is involved in the activation of salt secretion mechanisms in euryhaline medaka (Oryzias melastigma) during acclimation to acute salinity stress. In response to a 30-ppt seawater (SW) challenge, Na+/Cl- secretion was enhanced within 0.5 h, with concomitant organization of ionocyte multicellular complexes and without changes in expression of major transporters. Igf1 receptor inhibitors significantly impair the Na+/Cl- secretion and ionocyte multicellular complex responses without affecting transporter expression. Thus, Igf1 may activate salt secretion as part of the teleost response to acute salinity stress by exerting effects on transporter function and enhancing the formation of ionocyte multicellular complexes. These findings provide new insights into hormonal control of body fluid ionic/osmotic homeostasis during vertebrate evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1530/JOE-20-0053DOI Listing

Publication Analysis

Top Keywords

acute salinity
16
salinity stress
16
salt secretion
12
ionocyte multicellular
12
insulin-like growth
8
growth factor
8
na+/cl- secretion
8
multicellular complexes
8
secretion
5
factor triggers
4

Similar Publications

The effect of calcium on acute sodium chloride toxicity in Daphnia species.

Environ Toxicol Chem

January 2025

Department of Biology, Queen's University, Kingston, ON, Canada.

Chloride concentrations in freshwater are rising, with toxic effects on aquatic life. In temperate regions with cold winters, road salt used for deicing paved surfaces is a primary cause. There is evidence that water hardness can modify salt toxicity, but data are insufficient to inform policy.

View Article and Find Full Text PDF

As an abiotic stress factor, salinity significantly affects the physiological activities of crustaceans. In this study, transcriptome sequencing was used to evaluate the mechanism of ion transport and the physiological response of black tiger shrimp (Penaeus monodon) under low salt stress. Four hundred post larval (PL) stage P.

View Article and Find Full Text PDF

Repeatability of critical thermal maximum (CT) in two freshwater ectotherms across contexts.

J Therm Biol

January 2025

Department of Biology, Trent University, Peterborough, ON, K9J 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, K9J 5G7, Canada. Electronic address:

Critical thermal maximum (CT) is the most widely used method for quantifying acute upper thermal limits in ectotherms. CT protocol exposes animals to a consistent rate of environmental warming until they lose motor function. CT has been used to assess intraspecific variation among life stages, populations, or as a function of body size, often with the assumption that it is a durable and heritable trait at the individual level.

View Article and Find Full Text PDF

High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds.

View Article and Find Full Text PDF

Species interactions can contribute to species turnover when the outcomes of the interactions are context dependent (e.g., change along environmental gradients).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!