Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The lag effect in the polar organic chemical integrative sampler (POCIS) equipped with a polyethersulfone (PES) membrane (POCIS-PES) is a potential limitation for its application in water environments. In this study, a POCIS with a poly(tetrafluoroethylene) (PTFE) membrane (POCIS-PTFE) was investigated for circumventing membrane sorption in order to provide more reliable concentration measurements of organic contaminants. Sampler characteristics such as sampling rates (R) and sampler-water partition coefficients (K) were similar for POCIS-PES and POCIS-PTFE, indicating that partitioning into Oasis HLB as the receiving phase dominates the overall partitioning from the aqueous phase to the POCIS. Membrane sorption was quantified in both laboratory and field experiments. Although POCIS-PTFE showed minor membrane sorption, the PTFE membranes were not robust enough to prevent changes in the sorption of the pollutants to the inner Oasis HLB sorbent due to biofouling. This was reflected in significant ionization effects in the electrospray ionization (ESI) source during the LC-MS/MS analysis. Despite clear differences in the ionization effects, the two POCISs types provided similar time-weighted average (C) concentrations after a two-week passive sampling campaign in surface water and the outflow of a wastewater treatment plant. This study contributes to a more detailed understanding of POCIS application by providing a quantitative evaluation of membrane sorption and its associated effects in the laboratory and field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.115224 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!