Methylmercury (MeHg) is a neurotoxic compound that is found in virtually all fish and biomagnifies in aquatic food webs. Although MeHg concentrations in marine and estuarine fish are often elevated, the impacts of MeHg on marine and estuarine fish have largely been understudied. To evaluate the impact of dietary MeHg on marine fish reproduction and effects on their offspring, female juvenile sheepshead minnows (Cyprinodon variegatus) at three months of age were experimentally exposed to MeHg-contaminated diets for two months and then paired with Hg-free males for spawning. Egg production, hatching success of embryos, time to hatching, survival of larvae, growth of larvae and swimming behavior of larvae were determined. Selenium (Se) was also measured and Se/Hg molar ratios were calculated to assess whether Se reduced MeHg toxicity. MeHg had no significant impact on fish reproduction or on survival and growth of larvae. Larvae produced by MeHg-exposed mothers had concentrations of Hg about 1 ppm (dry wt), or about 12% of that in the muscle of their mothers and consistently displayed 6-15% increased swimming speed relative to controls; the ecological significance of this moderate effect on swimming speed requires further study. The Se/Hg molar ratios in these fish, which were >1 in controls (adults and larvae) and MeHg-exposed larvae but <1 in Hg-exposed adults, did not correlate with MeHg effects. The sheepshead minnow, at a low trophic level, appears to have a high tolerance of MeHg; however, it can pass MeHg to higher trophic levels in marine ecosystems where upper level predators have MeHg concentrations sometimes exceeding US FDA safety limits of 1 ppm wet wt.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.115226 | DOI Listing |
Ecotoxicol Environ Saf
December 2024
U S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.
PFAS has a ubiquitous environmental occurrence, posing challenges to sediment management. To address data gaps concerning release of PFAS from sediment to the water column during dredged material aquatic placement or other sediment resuspension activity, we generated elutriates from PFAS-contaminated sediments. Sediments were obtained from both freshwater and estuarine environments, with a field-collected sediment representative of contaminated areas and a spiked sediment with concentrations exceeding levels frequently measured at contaminated sites.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Rd., Lanzhou 730070, Gansu, PR China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou Jiaotong University, 88 Anning West Rd., Lanzhou 730070, Gansu, PR China. Electronic address:
A quantitative structure-activity relationship (QSAR) study was conducted on 313 pesticides to predict their acute toxicity to Sheepshead minnow (Cyprinodon variegatus) by using DRAGON descriptors. Essentials accounting for a reliable model were all considered carefully, giving full consideration to the OECD (Organization for Economic Co-operation and Development) principles for QSAR acceptability in regulation during the model construction and assessment process. Nine variables were selected through the forward stepwise regression method and used as inputs to construct both linear and nonlinear models.
View Article and Find Full Text PDFSci Total Environ
December 2024
US Environmental Protection Agency, ORD/CEMM/Atlantic Coastal Environmental Sciences Division, Narragansett, RI, USA.
Ecotoxicol Environ Saf
October 2024
Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), 217, Gajeong-ro, Daejeon 34113, Republic of Korea. Electronic address:
Polyethylene terephthalate (PET) fibers are contaminated in wastewater from various primary sources, such as washing textile waters. PET fibers in the environment can be degraded into microfibers because of weathering processes such as sunlight, physical wear, and heat. Although recent studies reported adverse effects of PET microfibers on aquatic organisms, the lack of information on their toxicity and mode of action hampers the risk assessment of PET microfibers.
View Article and Find Full Text PDFEnviron Toxicol Chem
November 2024
Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!