Minor effects of dietary methylmercury on growth and reproduction of the sheepshead minnow Cyprinodon variegatus and toxicity to their offspring.

Environ Pollut

School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA. Electronic address:

Published: November 2020

Methylmercury (MeHg) is a neurotoxic compound that is found in virtually all fish and biomagnifies in aquatic food webs. Although MeHg concentrations in marine and estuarine fish are often elevated, the impacts of MeHg on marine and estuarine fish have largely been understudied. To evaluate the impact of dietary MeHg on marine fish reproduction and effects on their offspring, female juvenile sheepshead minnows (Cyprinodon variegatus) at three months of age were experimentally exposed to MeHg-contaminated diets for two months and then paired with Hg-free males for spawning. Egg production, hatching success of embryos, time to hatching, survival of larvae, growth of larvae and swimming behavior of larvae were determined. Selenium (Se) was also measured and Se/Hg molar ratios were calculated to assess whether Se reduced MeHg toxicity. MeHg had no significant impact on fish reproduction or on survival and growth of larvae. Larvae produced by MeHg-exposed mothers had concentrations of Hg about 1 ppm (dry wt), or about 12% of that in the muscle of their mothers and consistently displayed 6-15% increased swimming speed relative to controls; the ecological significance of this moderate effect on swimming speed requires further study. The Se/Hg molar ratios in these fish, which were >1 in controls (adults and larvae) and MeHg-exposed larvae but <1 in Hg-exposed adults, did not correlate with MeHg effects. The sheepshead minnow, at a low trophic level, appears to have a high tolerance of MeHg; however, it can pass MeHg to higher trophic levels in marine ecosystems where upper level predators have MeHg concentrations sometimes exceeding US FDA safety limits of 1 ppm wet wt.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115226DOI Listing

Publication Analysis

Top Keywords

cyprinodon variegatus
8
marine estuarine
8
estuarine fish
8
mehg marine
8
fish reproduction
8
growth larvae
8
se/hg molar
8
molar ratios
8
swimming speed
8
larvae
7

Similar Publications

PFAS has a ubiquitous environmental occurrence, posing challenges to sediment management. To address data gaps concerning release of PFAS from sediment to the water column during dredged material aquatic placement or other sediment resuspension activity, we generated elutriates from PFAS-contaminated sediments. Sediments were obtained from both freshwater and estuarine environments, with a field-collected sediment representative of contaminated areas and a spiked sediment with concentrations exceeding levels frequently measured at contaminated sites.

View Article and Find Full Text PDF

Explainable machine learning models for predicting the acute toxicity of pesticides to sheepshead minnow (Cyprinodon variegatus).

Sci Total Environ

December 2024

School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Rd., Lanzhou 730070, Gansu, PR China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou Jiaotong University, 88 Anning West Rd., Lanzhou 730070, Gansu, PR China. Electronic address:

A quantitative structure-activity relationship (QSAR) study was conducted on 313 pesticides to predict their acute toxicity to Sheepshead minnow (Cyprinodon variegatus) by using DRAGON descriptors. Essentials accounting for a reliable model were all considered carefully, giving full consideration to the OECD (Organization for Economic Co-operation and Development) principles for QSAR acceptability in regulation during the model construction and assessment process. Nine variables were selected through the forward stepwise regression method and used as inputs to construct both linear and nonlinear models.

View Article and Find Full Text PDF
Article Synopsis
  • Repeated addition of activated carbon (AC) to sand caps over PCB-contaminated sediment can help reduce PCB bioaccumulation in sheepshead minnows, especially when the ongoing sediment input is also contaminated.
  • However, adding AC increased PCB uptake in fish when the sediment input was clean, with a significant 79% rise in bioaccumulation over the first 60 days.
  • The findings suggest the need for careful timing and considerations of the remediation process, as the effectiveness may vary based on the quality of sediment input.
View Article and Find Full Text PDF

Merkel cells and corpuscles of Stannius as putative targets for polyethylene terephthalate microfibers in sheepshead minnow larvae.

Ecotoxicol Environ Saf

October 2024

Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), 217, Gajeong-ro, Daejeon 34113, Republic of Korea. Electronic address:

Polyethylene terephthalate (PET) fibers are contaminated in wastewater from various primary sources, such as washing textile waters. PET fibers in the environment can be degraded into microfibers because of weathering processes such as sunlight, physical wear, and heat. Although recent studies reported adverse effects of PET microfibers on aquatic organisms, the lack of information on their toxicity and mode of action hampers the risk assessment of PET microfibers.

View Article and Find Full Text PDF
Article Synopsis
  • There is a growing concern over the health and environmental risks of PFAS, leading to the development of PFAS-free firefighting foams for military and residential use.
  • A study evaluated the chronic toxicity of seven PFAS-free foams and one PFAS-containing foam on six aquatic species, assessing impacts on growth, development, reproduction, and survival.
  • Results indicated that some PFAS-free foams were as or more toxic than the PFAS-containing foam, highlighting the need for careful selection of these alternatives to reduce environmental harm.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!