When high-frequency radiation is incident upon graphene subjected to a perpendicular magnetic field, graphene absorbs incident photons by allowing transitions between nearest Landau levels that follow strict selection rules dictated by angular momentum conservation. Here, we show a qualitative deviation from this behavior in high-quality graphene devices exposed to terahertz (THz) radiation. We demonstrate the emergence of a pronounced THz-driven photoresponse, which exhibits low-field magnetooscillations governed by the ratio of the frequency of the incoming radiation and the quasiclassical cyclotron frequency. We analyze the modifications of generated photovoltage with the radiation frequency and carrier density and demonstrate that the observed photoresponse shares a common origin with microwave-induced resistance oscillations discovered in GaAs-based heterostructures; however, in graphene it appears at much higher frequencies and persists above liquid nitrogen temperatures. Our observations expand the family of radiation-driven phenomena in graphene, paving the way for future studies of nonequilibrium electron transport.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.0c01918DOI Listing

Publication Analysis

Top Keywords

graphene
6
observation terahertz-induced
4
terahertz-induced magnetooscillations
4
magnetooscillations graphene
4
graphene high-frequency
4
radiation
4
high-frequency radiation
4
radiation incident
4
incident graphene
4
graphene subjected
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!