Improved Fast Randomized Iteration Approach to Full Configuration Interaction.

J Chem Theory Comput

Department of Chemistry, Columbia University, New York, New York 10027, United States.

Published: September 2020

We present three modifications to our recently introduced fast randomized iteration method for full configuration interaction (FCI-FRI) and investigate their effects on the method's performance for Ne, HO, and N. The initiator approximation, originally developed for full configuration interaction quantum Monte Carlo, significantly reduces statistical error in FCI-FRI when few samples are used in compression operations, enabling its application to larger chemical systems. The semistochastic extension, which involves exactly preserving a fixed subset of elements in each compression, improves statistical efficiency in some cases but reduces it in others. We also developed a new approach to sampling excitations that yields consistent improvements in statistical efficiency and reductions in computational cost. We discuss possible strategies based on our findings for improving the performance of stochastic quantum chemistry methods more generally.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.0c00437DOI Listing

Publication Analysis

Top Keywords

full configuration
12
configuration interaction
12
fast randomized
8
randomized iteration
8
statistical efficiency
8
improved fast
4
iteration approach
4
approach full
4
interaction three
4
three modifications
4

Similar Publications

: Gait analysis, traditionally performed with lab-based optical motion capture systems, offers high accuracy but is costly and impractical for real-world use. Wearable technologies, especially inertial measurement units (IMUs), enable portable and accessible assessments outside the lab, though challenges with sensor placement, signal selection, and algorithm design can affect accuracy. This systematic review aims to bridge the benchmarking gap between IMU-based and traditional systems, validating the use of wearable inertial systems for gait analysis.

View Article and Find Full Text PDF

This paper introduces cross-wound CFRP shear reinforcement of hollow HPC beams. The CFRP reinforcement was manufactured in the form of a square tubular mesh from carbon rovings oriented at ±45° from the longitudinal axis. The shear reinforcement was made in two variants from carbon yarns with linear densities of 1600 and 3700 tex.

View Article and Find Full Text PDF

Utilizing the sparsity of the electronic structure problem, fragmentation methods have been researched for decades with great success, pushing the limits of ab initio quantum chemistry ever further. Recently, this set of methods has been expanded to include a fundamentally different approach called excitonic renormalization, providing promising initial results. It builds a supersystem Hamiltonian in a second-quantized-like representation from transition-density tensors of isolated fragments, contracted with biorthogonalized molecular integrals.

View Article and Find Full Text PDF

Alluaudite-type NaFe(SO) (NFS) with high theoretical energy density is regarded as the promising cathode of sodium-ion batteries (SIBs), while practical rate and cyclic performances are still hindered by intrinsic poor conductivity. Here, a facile method is developed, collaborating high-boiling organic solvents assisted colloidal synthesis (HOS-CS) with sintering for tailoring NaFe(SO) nanocrystals decorated by conductive carbon network toward high-rate-capability cathode of SIBs. Impressively, the as-prepared NaFe(SO)@MC provides 60.

View Article and Find Full Text PDF

Comparing sewage sludge vs. digested sludge for starting-up thermophilic two-stage anaerobic digesters: Operational and economic insights.

Waste Manag

January 2025

BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, Québec, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. Electronic address:

Despite advances in anaerobic digestion (AD), full-scale implementation faces significant challenges, particularly during the start-up phase, where inoculum selection is crucial. This study examines the impact of inoculum choice on the operational and economic performance of thermophilic digesters during the start-up phase. Methanogenic reactors R3 and R4 were inoculated with digested sludge (DiS) and diluted sewage sludge (DSS), respectively, and fed with hydrolyzed source-sorted organic fraction of municipal solid waste (SS-OFMSW) and thickened sewage sludge, which were processed in R1 and R2, serving as acidogenic reactors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!