The sex-specific prevalence of adrenal diseases has been known for a long time. However, the reason for the high prevalence of these diseases in females is not completely understood. Mouse studies have shown that the adult adrenal gland is sexually dimorphic at different levels such as transcriptome, histology, and cell renewal. Here we used RNA-seq to show that in prepubertal mice, male and female adrenal glands were not only sexually dimorphic but also responded differently to the same external stimulus. We previously reported that thyroid hormone receptor β1 (TRβ1) in the adrenal gland is mainly expressed in the inner cortex and the fate of this TRβ1-expressing cell population can be changed by thyroid hormone (triiodothyronine; T3) treatment. In the present study, we found that adrenal glands in prepubertal mice were sexually dimorphic at the level of the transcriptome. Under T3 treatment, prepubertal females had 1162 genes differentially expressed between the saline and T3 groups, whereas in males of the same age, only 512 genes were T3-responsive. Immunostaining demonstrated that several top sexually dimorphic T3-responsive genes, including Cyp2f2 and Dhcr24, were specifically expressed in the adrenal inner cortex, precisely in an area partially overlapping with the X-zone. Under T3 treatment, a unique cortical layer that surrounds the adrenal X-zone expanded significantly, forming a distinct layer peculiar to females. Our findings identified novel marker genes for the inner adrenal cortex, indicating there are different sub-zones in the zona fasciculata. The results also highlight the sex-specific response to thyroid hormone in the mouse adrenal gland.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446775 | PMC |
http://dx.doi.org/10.1210/endocr/bqaa126 | DOI Listing |
Protoplasma
January 2025
Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
Insect antennae play a crucial role in communication, acting as receptors for both chemical and physical cues. This sensory reception is facilitated by specialized cuticular structures known as sensilla, which exhibit diverse morphologies and functions. In ants, caste polymorphism and sexual dimorphism manifest in antennal structure.
View Article and Find Full Text PDFGeroscience
January 2025
Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases.
View Article and Find Full Text PDFNeurosci Bull
January 2025
School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
Alzheimers Dement
December 2024
Southern Illinois University School of Medicine, Springfield, IL, USA.
Background: Glutamatergic neurotransmission plays an essential role in learning and memory. Previous studies support a dynamic shift in excitatory signaling with Alzheimer's disease (AD) progression, contributing to negative cognitive outcomes. The majority of previous studies have relied heavily on male physiology when determining these alterations in AD mouse models.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Stanford University, Stanford, CA, USA.
Background: The X-chromosome remains largely unexplored in Alzheimer's disease (AD). We performed the first, stratified X-wide association study (XWAS) of AD to chart the role of X-chromosome genetic variation in AD sexual dimorphism and heterogeneity of APOE*4-related AD risk.
Method: The study overview is shown in Figure 1A.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!