Owl flight has been studied over multiple decades associated with bio-inspiration for silent flight. However, their aerodynamics has been less researched. The aerodynamic noise generated during flight depends on the turbulent state of the flow. In order to document the turbulent characteristics of the owl during flapping flight, we measured the wake flow behind a freely flying great horned owl (Bubo virginianus). For comparison purposes, we chose to fly a similar-sized raptor a Harris's hawk (Parabuteo unicinctus): one is nocturnal and the other is a diurnal bird of prey. Here, we focus on the wake turbulent aspects and their impact on the birds' flight performances. The birds were trained to fly inside a large-scale wind tunnel in a perch-to-perch flight mode. The near wake of the freely flying birds was characterized using a long duration time-resolved particle image velocimetry system. The velocity fields in the near wake were acquired simultaneously with the birds' motion during flight which was sampled using multiple high-speed cameras. The turbulent momentum fluxes, turbulent kinetic energy production, and dissipation profiles are examined in the wake and compared. The near wake of the owl exhibited significantly higher turbulent activity than the hawk in all cases, though both birds are similar in size and followed similar flight behavior. It is suggested that owls modulate the turbulence activity of the near wake in the vicinity of the wing, resulting in rapid decay before radiating into the far-field; thus, suppressing the aerodynamic noise at the far wake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icaa106 | DOI Listing |
Biomimetics (Basel)
November 2024
Robotics Institute, Beihang University, Beijing 100191, China.
Many flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of using integrated kinematics and aerodynamics is scarce.
View Article and Find Full Text PDFCurr Biol
October 2024
Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA. Electronic address:
To navigate complex environments, walking animals must detect and overcome unexpected perturbations. One technical challenge when investigating adaptive locomotion is measuring behavioral responses to precise perturbations during naturalistic walking; another is that manipulating neural activity in sensorimotor circuits often reduces spontaneous locomotion. To overcome these obstacles, we introduce miniature treadmill systems for coercing locomotion and tracking 3D kinematics of walking Drosophila.
View Article and Find Full Text PDFJ R Soc Interface
July 2024
Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
Insect wings are flexible structures that exhibit deformations of complex spatiotemporal patterns. Existing studies on wing deformation underscore the indispensable role of wing deformation in enhancing aerodynamic performance. Here, we investigated forward flight in bluebottle flies, flying semi-freely in a magnetic flight mill; we quantified wing surface deformation using high-speed videography and marker-less surface reconstruction and studied the effects on aerodynamic forces, power and efficiency using computational fluid dynamics.
View Article and Find Full Text PDFPLoS One
July 2024
Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.
To understand the locomotory mechanisms of flying and swimming animals, it is often necessary to develop assays that enable us to measure their responses to external gust perturbations. Typically, such measurements have been carried out using a variety of gusts which are difficult to control or characterize owing to their inherently turbulent nature. Here, we present a method of generating discrete gusts under controlled laboratory conditions in the form of a vortex rings which are well-characterized and highly controllable.
View Article and Find Full Text PDFNano Lett
July 2024
NanoLund and Division of Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden.
We demonstrate experimentally nonequilibrium transport in unipolar quasi-1D hot electron devices reaching the ballistic limit at room temperature. The devices are realized with heterostructure engineering in nanowires to obtain dopant- and dislocation-free 1D-epitaxy and flexible bandgap engineering. We show experimentally the control of hot electron injection with a graded conduction band profile and the subsequent filtering of hot and relaxed electrons with rectangular energy barriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!