A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using GC Content to Compare Recombination Patterns on the Sex Chromosomes and Autosomes of the Guppy, Poecilia reticulata, and Its Close Outgroup Species. | LitMetric

Genetic and physical mapping of the guppy (Poecilia reticulata) have shown that recombination patterns differ greatly between males and females. Crossover events occur evenly across the chromosomes in females, but in male meiosis they are restricted to the tip furthest from the centromere of each chromosome, creating very high recombination rates per megabase, as in pseudoautosomal regions of mammalian sex chromosomes. We used GC content to indirectly infer recombination patterns on guppy chromosomes, based on evidence that recombination is associated with GC-biased gene conversion, so that genome regions with high recombination rates should be detectable by high GC content. We used intron sequences and third positions of codons to make comparisons between sequences that are matched, as far as possible, and are all probably under weak selection. Almost all guppy chromosomes, including the sex chromosome (LG12), have very high GC values near their assembly ends, suggesting high recombination rates due to strong crossover localization in male meiosis. Our test does not suggest that the guppy XY pair has stronger crossover localization than the autosomes, or than the homologous chromosome in the close relative, the platyfish (Xiphophorus maculatus). We therefore conclude that the guppy XY pair has not recently undergone an evolutionary change to a different recombination pattern, or reduced its crossover rate, but that the guppy evolved Y-linkage due to acquiring a male-determining factor that also conferred the male crossover pattern. We also identify the centromere ends of guppy chromosomes, which were not determined in the genome assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msaa187DOI Listing

Publication Analysis

Top Keywords

recombination patterns
12
high recombination
12
recombination rates
12
guppy chromosomes
12
recombination
8
sex chromosomes
8
guppy
8
guppy poecilia
8
poecilia reticulata
8
male meiosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!