Rapid but yet sensitive, specific, and high-throughput detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is key to diagnose infected people and to better control the spread of the virus. Alternative methodologies to PCR and immunodiagnostics that would not require specific reagents are worthy to investigate not only for fighting the COVID-19 pandemic but also to detect other emergent pathogenic threats. Here, we propose the use of tandem mass spectrometry to detect SARS-CoV-2 marker peptides in nasopharyngeal swabs. We documented that the signal from the microbiota present in such samples is low and can be overlooked when interpreting shotgun proteomic data acquired on a restricted window of the peptidome landscape. In this proof-of-concept study, simili nasopharyngeal swabs spiked with different quantities of purified SARS-CoV-2 viral material were used to develop a nanoLC-MS/MS acquisition method, which was then successfully applied on COVID-19 clinical samples. We argue that peptides ADETQALPQR and GFYAQGSR from the nucleocapsid protein are of utmost interest as their signal is intense and their elution can be obtained within a 3 min window in the tested conditions. These results pave the way for the development of time-efficient viral diagnostic tests based on mass spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.0c00535DOI Listing

Publication Analysis

Top Keywords

nasopharyngeal swabs
12
mass spectrometry
12
clinical samples
8
proteotyping sars-cov-2
4
sars-cov-2 virus
4
virus nasopharyngeal
4
swabs proof-of-concept
4
proof-of-concept focused
4
focused min
4
min mass
4

Similar Publications

This observational study evaluated the relationship between lung consolidation observed at weaning and calf ADG, and the association of pathogen shedding at weaning on ADG in beef × dairy calves up to 238 d. Beef × Holstein calves (n = 143) were sourced from 2 dairies. Calves were managed in 3 cohorts and fed milk replacer and calf starter preweaning.

View Article and Find Full Text PDF

Background: Streptococcus pneumoniae is an important cause of pneumonia, sepsis, and meningitis, which are leading causes of child mortality. Pneumococcal conjugate vaccines (PCVs) protect against disease and nasopharyngeal colonization with vaccine serotypes, reducing transmission to and among unvaccinated individuals. Mozambique introduced 10-valent PCV (PCV10) in 2013.

View Article and Find Full Text PDF

Nasal spray treatments that inhibit the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) entry into nose and nasopharynx at early stages can be an appropriate approach to stop or delay the progression of the disease. We performed a prospective, randomized, double-blind, placebo-controlled, parallel-group, multicentric, phase II clinical trial comparing the rate of hospitalization due to COVID-19 infection between azelastine 0.1% nasal spray and placebo nasal spray treatment groups.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants has heightened concerns about vaccine efficacy, posing challenges in controlling the spread of COVID-19. As part of the COVID-19 Vaccine Effectiveness and Variants (COVVAR) study in Uganda, this study aimed to genotype and characterize SARS-CoV-2 variants in patients with COVID-19-like symptoms who tested positive on a real-time PCR. Amplicon deep sequencing was performed on 163 oropharyngeal/nasopharyngeal swabs collected from symptomatic patients.

View Article and Find Full Text PDF

Background/objectives: The COVID-19 pandemic has significantly impacted global health, with varying vaccine effectiveness (VE) across different regions and vaccine platforms. In Africa, where vaccination rates are relatively low, inactivated vaccines like BBIP-CorV (Sinopharm) and Coronovac (Sinovac) have been widely used. This study evaluated the real-world effectiveness of licensed inactivated COVID-19 vaccines in Zimbabwe during a period dominated by Omicron variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!