A new technique for generating bulk nanobubble suspensions has been developed based on Henry's law which states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid. This principle which forms the basis of vacuum degasification has been exploited here to produce stable bulk nanobubbles in excess of 10 bubble mL in pure water, through successive expansion/compression strokes inside a sealed syringe. We provide evidence that the observed nano-entities must be gas-filled nanobubbles by showing that: (i) they cannot be attributed to organic or inorganic impurities; (ii) they disappear gradually over time whilst their mean size remains unchanged; (iii) their number density depends on the concentration of dissolved gas in water and its solubility; and (iv) added sparging of gas enhances process yield. We study the properties of these nanobubbles including the effects of type of dissolved gas, water pH and the presence of different valence salts on their number density and stability. Given the potential of the technique for large scale production of nanobubble suspensions, we describe a successfully tested automated model and outline the basis for process scale-up.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr03332d | DOI Listing |
J Environ Manage
January 2025
Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
Floating photovoltaics (FPVs), solar panels installed on floating structures in freshwater ecosystems such as lakes, represent a growing renewable technology aimed at decarbonizing the energy sector. However, robust empirical assessments of its environmental effects are still lacking. We used a Before-After-Control-Impact design replicated at the ecosystem level (n = 6 lakes: three lakes with FPV compared to three non-FPV lakes) to determine the global effects of FPV on water temperature over three years and allowing to isolate FPV effects from natural variability.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Faculty of Food and Agricultural Sciences, Fukushima University.
Sterols and triterpene alcohols exist in free and esterified forms in edible oils. To date, only few studies have determined the content of free or esterified sterols and triterpene alcohols using gas chromatography-flame ionization detection (GC-FID). In this study, analytical conditions were optimized using free and esterified sterol standards.
View Article and Find Full Text PDFA method involving gas chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (GC-Q/Orbitrap HRMS) with the QuEChERS method was developed to analyze 36 non-phthalate plasticizers in milk powder products. The samples were dissolved in 20% NaCl, extracted with acetonitrile, and purified using silica, PSA, and C. The results showed the excellent linear relationship of the calibration curves of 36 non-phthalate plasticizers in the range of 10-1000 ng mL, with correlation coefficients () not less than 0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan 523803, China. Electronic address:
The application of chitosan in packaging has always been limited due to its brittle and hygroscopic nature. In this study, hydrophobic short-chain fatty acids (SCFAs) were utilized to modify chitosan to overcome this issue. For the first time, hydrophobic SCFAs, typically hexanoic acid and its homologs, were found to be able to dissolve chitosan in water as well as its hydrophilic analog.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!