AI Article Synopsis

  • A new method for hydroamination of styrenes using alkali metals and 2-methyltetrahydrofuran as a green solvent is presented.
  • The study challenges the common belief that organolithium reagents can’t tolerate moisture, showing that moisture actually helps produce phenethylamines instead of unwanted byproducts.
  • Sodium amides are highlighted as effective catalysts in this reaction, particularly when used in controlled environments without air.

Article Abstract

A straightforward alkali-metal-mediated hydroamination of styrenes using biorenewable 2-methyltetrahydrofuran as a solvent is reported. Refuting the conventional wisdom of the incompatibility of organolithium reagents with air and moisture, shown here is that the presence of moisture is key in favoring formation of the target phenethylamines over competing olefin polymerization products. The method is also compatible with sodium amides, with the latter showing excellent promise as highly efficient catalysts under inert atmosphere conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202008512DOI Listing

Publication Analysis

Top Keywords

ambient moisture
4
moisture accelerates
4
accelerates hydroamination
4
hydroamination reactions
4
reactions vinylarenes
4
vinylarenes alkali-metal
4
alkali-metal amides
4
amides air
4
air straightforward
4
straightforward alkali-metal-mediated
4

Similar Publications

Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance.

Sensors (Basel)

December 2024

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.

View Article and Find Full Text PDF

This study investigates the feasibility of using nano-thermal rod for deicing tunnel pavements in cold region. The heating performance of the nano-thermal rod was compared with that of carbon fiber heating wire under low voltage conditions. Experimental studies were conducted in a controlled environmental chamber to evaluate the effects of arrangement parameters (spacing, buried depth, input power) and environmental factors (ambient temperature and moisture) on heating rate and effectiveness.

View Article and Find Full Text PDF

Understanding the environment-dependent stability and photoluminescence (PL) properties of advanced perovskite materials remains a challenge with conflicting views. Herein, we investigated the influence of the host matrix (poly(methyl methacrylate) (PMMA) and polystyrene (PS)) and atmospheric conditions (ambient and N) on the PL properties of a CsPbBr perovskite quantum dot (PQD) using single-particle spectroscopy. Despite the same PL blinking mechanism, the PL properties of the PQD were considerably affected by the environmental conditions.

View Article and Find Full Text PDF

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

Ground-level ozone (O) can infiltrate indoor environments, severely impacting the environment and human health. Moisture-induced catalyst deactivation is a major challenge in catalytic ozone removal. MOF-template-derived heterojunctions supported by carbon materials can prevent chemisorption of water vapor at active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!