Peripheral nerve injuries result in motor and sensory dysfunction which can be recovered by compensatory or regenerative processes. In situations where axonal regeneration of injured neurons is hampered, compensation by collateral sprouting from uninjured neurons contributes to target reinnervation and functional recovery. Interestingly, this process of collateral sprouting from uninjured neurons has been associated with the activation of growth-associated programs triggered by Wallerian degeneration. Nevertheless, the molecular alterations at the transcriptomic level associated with these compensatory growth mechanisms remain to be fully elucidated. We generated a surgical model of partial sciatic nerve injury in mice to mechanistically study degeneration-induced collateral sprouting from spared fibers in the peripheral nervous system. Using next-generation sequencing and Ingenuity Pathway Analysis, we described the sprouting-associated transcriptome of uninjured sensory neurons and compare it with the activated by regenerating neurons. In vitro approaches were used to functionally assess sprouting gene candidates in the mechanisms of axonal growth. Using a novel animal model, we provide the first description of the sprouting transcriptome observed in uninjured sensory neurons after nerve injury. This collateral sprouting-associated transcriptome differs from that seen in regenerating neurons, suggesting a molecular program distinct from axonal growth. We further demonstrate that genetic upregulation of novel sprouting-associated genes activates a specific growth program in vitro, leading to increased neuronal branching. These results contribute to our understanding of the molecular mechanisms associated with collateral sprouting in vivo. The data provided here will therefore be instrumental in developing therapeutic strategies aimed at promoting functional recovery after injury to the nervous system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-020-01986-3 | DOI Listing |
Mol Metab
December 2024
Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada. Electronic address:
Objective: Antagonism of the muscarinic acetylcholine type 1 receptor (MR) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in MR antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity.
Methods: Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and MR antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7).
J Transl Med
November 2024
Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.
Background: Vasculogenic therapies explored for the treatment of peripheral artery disease (PAD) have encountered minimal success in clinical trials. Addressing this, B55α, an isoform of protein phosphatase 2A (PP2A), emerges as pivotal in vessel remodeling through activation of hypoxia-inducible factor 1α (HIF-1α). This study delves into the pharmacological profile of VCE-004.
View Article and Find Full Text PDFFood Chem X
June 2024
Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
Germinated soybean is one kind of food and a medicine. In the actual process of producing a large amount of naturally germinated soybean, it is difficult to strictly control the germination process conditions. However, sprout length may be more suitable as the terminal judgment indicator for naturally germinated soybean.
View Article and Find Full Text PDFMuscle Nerve
July 2024
IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
Introduction/aims: MScanFit MUNE (MScanFit) is a novel tool to derive motor unit number estimates (MUNEs) from compound muscle action potential (CMAP) scans. Few studies have explored its utility in 5q spinal muscular atrophy (SMA5q) patients, assessing only the abductor pollicis brevis (APB) muscle. We aimed to assess different distal muscles in pediatric and adult SMA5q patients, further evaluating clinical-electrophysiological correlations.
View Article and Find Full Text PDFJ Neurosci
April 2024
Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.
Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or collateral sprouting of neighboring uninjured afferents into denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received less attention. Here, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hindpaw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!