Intrinsically disordered proteins (IDPs) and regions (IDRs) are commonly found in all proteomes analyzed so far. These proteins/regions are subject to numerous posttranslational modifications (PTMs) and alternative splicing, are involved in a wide range of cellular functions, and often facilitate protein-protein interactions (PPIs). Some of these proteins contain molecular recognition features (MoRFs), which are IDRs that bind to partner proteins and undergo disorder-to-order transitions. Although many IDPs/IDRs can fold upon binding, a large fraction of these proteins are known to maintain significant amounts of disorder in their bound states. Being well-recognized interaction specialists, IDPs/IDRs can participate in one-to-many and many-to-one interactions, where one IDP/IDR binds to multiple partners potentially gaining very different structures in the bound state, or where multiple unrelated IDPs/IDRs bind to one partner. As a result, IDPs frequently serve as hubs (i.e., proteins with many links) in complex PPI networks. The goal of this chapter is to describe computational and bioinformatics tools that can be used to look at the disorder status of proteins within a given PPI network and also to gain some knowledge on the disorder-based functionality of the members of this network. To this end, description is provided for some of the use of UniProt and DisProt databases, several databases generating PPI networks (BioGRID, IntAct, DIP, MINT, HPRD, APID, KEGG, and STRING), Composition profiler, some tools for the per-residue disorder predictions (PONDR VLXT, PONDR VL3, PONDR VSL2, PONDR-FIT, and IUPred), binary disorder classifiers CH-plot and CDF-plot and their combined CH-CDF analysis, web-based tools for the visualization of disorder distribution in a query protein (DP and MobiDB), as well as some tools for evaluation disorder-based functionality of proteins (ANCHOR, MoRFpred, DEPP, and ModPred).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0524-0_46 | DOI Listing |
J Fungi (Basel)
January 2025
Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are incurable neurodegenerative disorders sharing pathological and genetic features, including mutations in the gene. FUS is an RNA-binding protein that mislocalizes to the cytoplasm and aggregates in ALS/FTD. In a yeast model, FUS proteinopathy is connected to changes in the epigenome, including reductions in the levels of H3S10ph, H3K14ac, and H3K56ac.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Variable lymphocyte receptors (VLRs) are the antigen receptors of jawless vertebrates such as lamprey. VLRs are of growing biotechnological interest for their ability to bind certain antigenic targets with higher affinity than traditional immunoglobulins. However, VLRs are disulfide-bonded proteins that are often challenging to produce requiring genetic modifications, fusion partners, non-scalable host cell lines or inclusion body formation and refolding.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.
View Article and Find Full Text PDFJ Virol
January 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
Porcine epidemic diarrhea virus (PEDV), as a type of Alphacoronavirus causing acute diarrhea and high death rate among sucking piglets, poses great financial damage to the swine industry. Nevertheless, the molecular mechanism whereby PEDV enters host cells is unclear, limiting the development of PED vaccines and anti-PEDV agents. The present study found that the host protein ribonuclease kappa (RNASEK) was regulated by USF2, a transcription factor, and facilitated the PEDV replication.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).
Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!