Gene therapy is the treatment of a disease through transferring genetic material into cells of the patients. In the recent several years, gene therapy has experienced rapid progress and achieved huge success. Over two dozens of gene therapies have been approved for clinical use by the drug regulatory agencies from different countries. However, concerns about its efficacy and safety have accompanied gene therapy since its birth. In the present manuscript, we first introduce various strategies employed in gene therapy, which includes ex vivo gene delivery v.s. in vivo gene delivery; gene addition v.s. genome editing; inherited disease v.s. acquired disease; and somatic gene therapy v.s. germline gene therapy. Then we discuss the clinical outcomes of some approved gene therapies. We finish our discussion with the safety issues related to gene therapy. We will see that with the technology improvement, somatic gene therapy has been proved to be efficient and safe enough for clinical practice. However, germline gene therapy has important efficiency and safety issues at present, and should not be put into clinical practice before these issues are solved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-020-03834-3 | DOI Listing |
Annu Rev Biomed Eng
January 2025
1Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFWiad Lek
January 2025
DEPARTMENT OF PHARMACOLOGY AND TOXICOLOGY, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, KUFA, IRAQ.
Objective: Aim: Testing Cordia myxa extract on colon cancer cell line and caspase-3 gene and COX-2 protein expression.
Patients And Methods: Materials and Methods: This study used Cordia myxa ethanolic extract at various dosages on SW480 cells. Cell proliferation was measured using MTT, also examined effect of Cordia myxa extract on caspase-3 gene expression using quantitative real-time polymerase chain reaction.
PLoS One
January 2025
Department of Biology, West Virginia State University, Institute, WV, United States of America.
Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers.
View Article and Find Full Text PDFBiofactors
January 2025
College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea.
Stereocaulon alpinum has been found to have potential pharmaceutical properties due to the presence of secondary metabolites such as usnic acid, atranorin, and lobaric acid (LA) which have anticancer activity. On the other hand, the effect of LA on the stemness potential of colorectal cancer (CRC) cells remains unexplored, and has not yet been thoroughly investigated. In this study, we examined the inhibitory activity of LA from Stereocaulon alpinum against the stemness potential of CRC cells and investigated the possible underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!