Cell cycle profile data on splenocytes of high fat diet induced obese mice treated with ferulic acid.

Data Brief

Department of Food and Nutrition, Hannam University, 70, Hannam-ro, Daedeok-gu, Daejeon 306-791, Republic of Korea.

Published: August 2020

The reported data are related to the article entitled "Ferulic acid maintains the self-renewal capacity of embryo stem cells and adipose-derived mesenchymal stem cells in high fat diet-induced obese mice" [1]. Ferulic acid is a natural bioactive compound and demonstrated potential to serve as a self-renewing biomarker in an alkaline phosphate assay and caused increased Nanog mRNA levels in embryonic stem cells. In these data, we examined another functional aspect of ferulic acid, namely the effect of ferulic acid on the cell cycle of splenocytes. These data were collected from the splenocytes of C57BL/6 J male mice that were fed either a high fat diet (HFD) alone or an HFD diet supplemented with ferulic acid (5 g/kg diet) for 8 weeks. As expected, the HFD resulted in a significant increase in mouse body weight, liver weight, and epididymal fat tissue weight compared to the control diet (Cho and Park, 2020). The cell cycle profile of mouse splenocytes in HFD-induced obese mice was evaluated by FACS. Since the G1 checkpoint is the point at which cells enter the cell cycle, an internal or external stimulation can cause the cell to delay passing G1 and instead enter a quiescent state known as G0 without proceeding past the restriction checkpoint. DNA damage is the main trigger that can cause a cell to "restrict" itself and not enter the cell cycle [2]. These results show that ferulic acid helps attenuate G1/S arrest in splenocytes in HFD-induced obese mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363655PMC
http://dx.doi.org/10.1016/j.dib.2020.105990DOI Listing

Publication Analysis

Top Keywords

ferulic acid
24
cell cycle
20
high fat
12
obese mice
12
stem cells
12
cycle profile
8
fat diet
8
splenocytes hfd-induced
8
hfd-induced obese
8
enter cell
8

Similar Publications

Maternal obesity predisposes offspring to type 2 diabetes (T2D) through a direct chronic effect of lipids on pancreatic β-cell neogenesis. β-cells produce FABP3 to bind and metabolize fatty acids. Ferulic acid (FA) is a natural product that may inhibit fatty acids' binding to FABP3, preventing their toxicity.

View Article and Find Full Text PDF

Polyphenols are known to interact with starch to form the V-type inclusion complex or the noninclusive complex. It is hypothesized that the addition of polyphenols could improve the properties of Chinese yam (Dioscorea opposita Thunb.) starch, and the properties of the complexes could be regulated by controlling the additive amount of polyphenols.

View Article and Find Full Text PDF

Although the gluten-free market is expanding and offers a variety of products, there are still some deficiencies in the nutritional and sensory quality of these products. Therefore, this study explores the bioaccessibility of phenolic compounds, nutritional quality, and textural properties of gluten-free muffins enriched with artichoke leaves and green lentil protein (GLP) isolate, two novel ingredients introduced together for the first time in this context. The incorporation of GLP isolate aims to enhance the protein content, while artichoke leaves are evaluated for its potential to improve phenolic content and antioxidant activity.

View Article and Find Full Text PDF

Phenolic acid-rich fraction from Anisopus mannii (PhAM) contains abundance of ferulic acid, gallic acid, protocatechuic acid, and syringic acid. Among other glycolytic enzymes, in vitro, PhAM counteracted the binding of sodium orthovanadate to phosphofructokinase 1 (PFK-1), improving its activities. In a rat model of diet-induced diabetes, PhAM monotherapy reduced HbA1c by an average of 0.

View Article and Find Full Text PDF

Ferulic acid mediates microbial fermentation of arabinoxylan to enhance host immunity by suppressing TLR4/NF-κB signaling.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!