Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments.

Front Bioeng Biotechnol

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.

Published: June 2020

The rational choice and design of biomaterials for biomedical applications is crucial for successful and strategies, ultimately dictating their performance and potential clinical applications. Alginate, a marine-derived polysaccharide obtained from seaweeds, is one of the most widely used polymers in the biomedical field, particularly to build three dimensional (3D) systems for culture and delivery of cells. Despite their biocompatibility, alginate hydrogels often require modifications to improve their biological activity, namely via inclusion of mammalian cell-interactive domains and fine-tuning of mechanical properties. These modifications enable the addition of new features for greater versatility and control over alginate-based systems, extending the plethora of applications and procedures where they can be used. Additionally, hybrid systems based on alginate combination with other components can also be explored to improve the mimicry of extracellular microenvironments and their dynamics. This review provides an overview on alginate properties and current clinical applications, along with different strategies that have been reported to improve alginate hydrogels performance as 3D matrices and 4D dynamic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338591PMC
http://dx.doi.org/10.3389/fbioe.2020.00665DOI Listing

Publication Analysis

Top Keywords

alginate hydrogels
12
clinical applications
8
alginate
5
modulating alginate
4
hydrogels improved
4
improved biological
4
biological performance
4
performance cellular
4
cellular microenvironments
4
microenvironments rational
4

Similar Publications

Double-Dynamic-Bond Cross-Linked Hydrogel Adhesive with Cohesion-Adhesion Enhancement for Emergency Tissue Closure and Infected Wound Healing.

Adv Healthc Mater

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.

The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion.

View Article and Find Full Text PDF

Hydrogel electrolytes are crucial for solving the problems of random zinc dendrite growth, hydrogen evolution reactions, and uncontrollable passivation. However, their complex fabrication processes pose challenges to achieving large-scale production with excellent mechanical properties required to withstand multiple cycles of mechanical loads while maintaining high electrochemical performance needed for the new-generation flexible zinc-ion batteries. Herein, we present a superspreading-based strategy to produce robust hydrogel electrolytes consisting of polyvinyl alcohol, sodium alginate and sodium acetate.

View Article and Find Full Text PDF

Constructing an Injectable Multifunctional Antibacterial Hydrogel Adhesive to Seal Complex Interfaces Post-Dental Implantation to Improve Soft Tissue Integration.

Macromol Biosci

January 2025

Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China.

Soft tissue integration (STI) around dental implants determines their long-term success, and the key is to immediately construct a temporary soft tissue-like barrier to prevent bacterial invasion after implantation and then, promote STI. In response to this need, an injectable multi-crosslinked hydrogel (MCH) with abilities of self-healing, anti-swelling, degradability, and dry/wet adhesion to soft tissue/titanium is developed using gallic acid-graft-chitosan, oxidized sodium alginate, gelatin, and Cu with water and borax solution as solvents, whose properties can be controlled by adjusting its composition and ratio. MCH can not only immediately build a sealing barrier to block the bacterial invasion in the oral simulation environment but also deliver outstanding antibacterial efficacy through the synergism of trapping bacteria and releasing bactericidal agents such as chitosan, gallic acid, aldehyde, and Cu.

View Article and Find Full Text PDF

Avian coccidiosis, caused by the protozoan Eimeria, leads to significant economic losses for the poultry industry. In this study, bacteriophages that specifically bind to the calcium-binding protein (EtCab) of Eimeria tenella were selected using a biopanning process with a pIII phage display library. The recombinant EtCab protein served as the ligand in this selection process.

View Article and Find Full Text PDF

Gastric ulcer (GU), a common digestive system disorder in clinical practice, often arises from excessive alcohol consumption and other factors that irritate the gastric mucosa. Effective treatment of GU remains challenging due to the poor targeting, limited efficacy, and significant side effects associated with current therapeutic approaches. To address these limitations, we developed a microenvironment-responsive hydrogel composed of sodium alginate (SA) and chitosan (CS), incorporating MnO nanoparticles and pachymic acid (PA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!