In the crystal of the title compound, CHFNS, the mol-ecules are non-planar, with dihedral angle formed by least-squares planes of tetra-zole and benzene rings of 59.94 (8) °. The crystal packing is formed by N-H⋯S hydrogen bonds, which link the mol-ecules into centrosymmetric dimers with an (8) ring motif, and by the offset face-to-face π-π stacking inter-actions between the benzene rings, which join the dimers into layers parallel to (100). The Hirshfeld surface analysis shows that the most important contributions to the surface contacts are from N⋯H/H⋯N (21.9%), S⋯H/H⋯S (21.1%), H⋯H (14.6%), F⋯H/H⋯F (11.8%) and C⋯H/H⋯C (9.5%) inter-actions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336801PMC
http://dx.doi.org/10.1107/S2056989020007033DOI Listing

Publication Analysis

Top Keywords

hirshfeld surface
8
surface analysis
8
benzene rings
8
crystal structure
4
structure hirshfeld
4
analysis 1-2-fluoro-phen-yl-1-tetra-zole-54-thione
4
1-2-fluoro-phen-yl-1-tetra-zole-54-thione crystal
4
crystal title
4
title compound
4
compound chfns
4

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().

View Article and Find Full Text PDF

This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.

View Article and Find Full Text PDF

Investigating solid-state photoreactivity, driven by crystal packing, has been a major enduring research theme in Crystal Engineering. Trans-3-styryl pyridine (3-StPy), an unsymmetric olefin, is photo-stable. However, when converted to a series of salts, they exhibited solid-state photoreactivity under UV irradiation.

View Article and Find Full Text PDF

This study presents the synthesis and characterization of novel cocrystal structures of theophylline (THE) with the amino acids gamma-aminobutyric acid (GABA) and l-arginine (ARG). Despite a large number of reports about THE cocrystals, no crystallographic parameters of cocrystals formed by THE and amino acids have been reported. THE is characterized by low solubility, while amino acids as cocrystal co-formers (CCFs) are increasingly recognized for their high solubility and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!