NLR family pyrin domain containing 3 (NLRP3) inflammasome accompanies chronic liver injury and is a critical mediator of inflammation-driven liver fibrosis. Sphingosine 1-phosphate (S1P)/S1P Receptor (S1PR) signaling participates in liver fibrogenesis by affecting bone marrow (BM)-derived monocytes/macrophage (BMM) activation. However, the relationship between S1P/S1PR signaling and NLRP3 inflammasome in BMMs remains unclear. Here, we found significantly elevated gene expression of NLRP3 inflammasome components (NLRP3, pro-interleukin-1β, and pro-interleukin-18) and the activation of NLRP3 inflammasome significantly elevated during murine chronic liver injury induced by a bile duct ligation operation, a methionine-choline-deficient and high-fat diet, or carbon tetrachloride intraperitoneal injection. Moreover, the increased expression of sphingosine kinase 1 (SphK1), the rate-limiting synthetic enzyme of S1P, was positively correlated with NLRP3 inflammasome components in both patients and mouse model livers. Flow cytometry analysis and immunofluorescence staining showed BMMs contributed to the significant proportion of NLRP3 cells in murine inflammatory livers, but not Kupffer cells, dendritic cells, endothelial cells, T cells, and hepatocytes. Focusing on macrophages, S1P promoted NLRP3 inflammasome priming and activation in a dose-dependent manner. Blockade of S1PR by JTE-013 (antagonist of S1PR) or S1PR-siRNA inhibited S1P-induced NLRP3 inflammasome priming and inflammatory cytokine (interleukin-1β and interleukin-18) secretion, whereas blockade of S1PR or S1PR had no such effect. , a β1,3-d-glucan-encapsulated siRNA particle (GeRP) delivery system is capable of silencing genes in macrophages specifically. Treatment with S1PR siRNA-GeRPs markedly reduced NLRP3 inflammasome priming and activation and attenuated liver inflammation and fibrosis. Together, the conclusions indicated that targeting macrophage S1PR retarded liver inflammation and fibrogenesis via downregulating NLRP3 inflammasome, which may represent an effective therapeutic strategy for chronic liver injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333785 | PMC |
http://dx.doi.org/10.3389/fimmu.2020.01149 | DOI Listing |
Eur J Pharmacol
January 2025
Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: Myocarditis tends to lead to a poor prognosis, but there are no satisfactory preventive or therapeutic strategies. Erianin, a natural benzene compound, has been found to have antioxidant and anti-inflammatory effects. However, the effects of erianin on myocarditis remain unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China. Electronic address:
Mushroom poisoning, predominantly caused by α-amanitin, is a critical food safety concern in worldwide, with severe cases leading to hepatotoxicity and fatalities. This study delves into the hepatotoxic effects of α-amanitin, focusing on the NLRP3 inflammasome and PPAR-γ's regulatory role in inflammation. In vitro studies with L-02 cells showed that α-amanitin reduces cell viability and triggers NLRP3 inflammasome activation, increasing NF-κB phosphorylation and pro-inflammatory cytokines IL-18 and IL-1β.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil.
Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!