A 5-year-old girl was brought to Department of Pediatric Endocrinology and Diabetes for premature breast development since 4 months. Her medical antecedents and family history were uneventful. From investigations she was diagnosed as a case of central precocious puberty. Identification of pesticides in farms surrounding their house indicates that this early stimulation of the hypothalamic-pituitary-gonadal axis was linked to the estrogen-like activity of endocrine-disrupting compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350395 | PMC |
http://dx.doi.org/10.1177/1179547620933585 | DOI Listing |
Animal Model Exp Med
January 2025
Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Background: Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited.
Methods: Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology.
J Pediatr Endocrinol Metab
January 2025
Department of Paediatrics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Objectives: Kisspeptin plays a major role in the onset of puberty by stimulating the gonadotropin-releasing hormone (GnRH) neurons. The aim of this study was to investigate whether GnRH inhibits kisspeptin secretion via a negative feedback mechanism and potential associations between kisspeptin levels and other hormones of importance for pubertal onset.
Methods: Thirteen girls with suspected central precocious puberty underwent a GnRH stimulation test twice in a randomized, placebo-controlled manner.
J Pediatr Endocrinol Metab
January 2025
117977 The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
Objectives: The gonadotropin-releasing hormone (GnRH) provocation test is crucial for diagnosing central precocious puberty (CPP). However, due to its invasion and high cost, it is essential to find a simpler biomarker. This study aimed to investigate the feasibility of fasting insulin (FINS) and insulin-like growth factor-1 (IGF-1) as potential biomarkers for diagnosing girls with CPP and to analyze their effects on puberty development.
View Article and Find Full Text PDFFront Pediatr
January 2025
Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Objective: This study analyzed the changes in blood glucose and lipid metabolism levels in children with central precocious puberty (CPP) and the correlation between CPP and obesity.
Methods: In total, 88 children with CPP aged 6-10 years who were admitted to our hospital between January 2023 and June 2024 (the CPP group), and 88 children without CPP in the same age group who received health check-ups (the non-CPP group) were retrospectively enrolled in this study. General data [gender, age, bone age, and body mass index (BMI)] were collected.
J Endocr Soc
January 2025
Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!