The central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) synchronizes peripheral oscillators to coordinate physiological and behavioural activities throughout the body. How circadian phase coherence between the SCN and the periphery is controlled is not well understood. Here, we identify hepatic SIRT7 as an early responsive element to light that ensures circadian phase coherence in the mouse liver. The SCN-driven body temperature (BT) oscillation induces rhythmic expression of HSP70, which promotes SIRT7 ubiquitination and proteasomal degradation. Acute temperature challenge dampens the BT oscillation and causes an advanced liver circadian phase. Further, hepatic SIRT7 deacetylates CRY1, promotes its FBXL3-mediated degradation and regulates the hepatic clock and glucose homeostasis. Loss of Sirt7 in mice leads to an advanced liver circadian phase and rapid entrainment of the hepatic clock upon daytime-restricted feeding. These data identify a BT-HSP70-SIRT7-CRY1 axis that couples the mouse hepatic clock to the central pacemaker and ensures circadian phase coherence and glucose homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s42255-019-0136-6 | DOI Listing |
J Sleep Res
January 2025
Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA.
Delayed sleep-wake phase disorder involves chronic difficulty going to bed and waking up at conventional times and often co-occurs with depression. This study compared sleep and circadian rhythms between patients with delayed sleep-wake phase disorder with depression (DSWPD-D) and without (DSWPD-ND) comorbid depression. Clinical records of 162 patients with delayed sleep-wake phase disorder (70 DSWPD-D, 92 DSWPD-ND) were analysed, including a subset of 76 patients with circadian phase determined by the dim light melatonin onset.
View Article and Find Full Text PDFCell Metab
January 2025
Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Center for Preventive Medicine, Keio University, Tokyo, Japan. Electronic address:
Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation.
View Article and Find Full Text PDFSleep Adv
December 2024
Operational Readiness and Health Directorate, Naval Health Research Center, San Diego, CA, USA.
Carefully timed light exposure is a promising countermeasure to overcome the negative sleep and circadian implications of shift work. However, many lighting interventions are static and applied at the group level (e.g.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia, 634050.
Monitoring the parameters and behavior of plankton makes it possible to assess the state of the aquatic ecosystem and detect the beginning of an environmental disaster at an early stage. In this respect, the most informative method for the in situ plankton study is underwater digital holography. This method allows obtaining information on the size, shape, and location of plankton individuals, as well as performing their classification and biotesting according to their behavioral responses using a submersible holographic camera non-invasively, in real time, and in the automatic mode.
View Article and Find Full Text PDFSleep Biol Rhythms
January 2025
Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-Ku, Kawasaki, Kanagawa 214-8571 Japan.
The ovarian steroid hormones, estrogen and progesterone, the levels of which fluctuate dynamically with the estrous cycle, alter circadian behavioral rhythms in mammals. However, it remains unclear whether the sleep-wake rhythm fluctuates with the menstrual cycle in humans. To ascertain the relationship between the menstrual cycle and sleep-wake rhythms, we evaluated the objective and long-term sleep-wake rhythms of ten healthy women using a recently developed wearable device.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!