The immune system plays a multifunctional role throughout the regenerative process, regulating both pro-/anti-inflammatory phases and progenitor cell function. In the present study, we identify the myokine/cytokine Meteorin-like (Metrnl) as a critical regulator of muscle regeneration. Mice genetically lacking Metrnl have impaired muscle regeneration associated with a reduction in immune cell infiltration and an inability to transition towards an anti-inflammatory phenotype. Isochronic parabiosis, joining wild-type and whole-body Metrnl knock-out (KO) mice, returns Metrnl expression in the injured muscle and improves muscle repair, providing supportive evidence for Metrnl secretion from infiltrating immune cells. Macrophage-specific Metrnl KO mice are also deficient in muscle repair. During muscle regeneration, Metrnl works, in part, through Stat3 activation in macrophages, resulting in differentiation to an anti-inflammatory phenotype. With regard to myogenesis, Metrnl induces macrophage-dependent insulin-like growth factor 1 production, which has a direct effect on primary muscle satellite cell proliferation. Perturbations in this pathway inhibit efficacy of Metrnl in the regenerative process. Together, these studies identify Metrnl as an important regulator of muscle regeneration and a potential therapeutic target to enhance tissue repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504545 | PMC |
http://dx.doi.org/10.1038/s42255-020-0184-y | DOI Listing |
BMC Musculoskelet Disord
January 2025
Department of Hand Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background: Rupture of extensor pollicis longus tendon (EPL) is a known complication following a distal radius fracture (DRF). Although the precise mechanisms behind these ruptures remain unclear, vascular impairment is thought to play a significant role. Additionally, the impact of an EPL rupture on microstructure of the tendon and muscle is not well understood, but such information could be important in guiding treatment strategies.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168 Gushan Road, Dongshan Street, Jiangning District, Nanjing, 211199, Jiangsu, China.
Muscle atrophy in pathological or diseased muscles arises from an imbalance between protein synthesis and degradation. Elevated levels of interleukin-6 (IL-6) are a hallmark of ischemic stroke and have been associated with muscle atrophy in certain pathological contexts. However, the mechanisms by which IL-6 induces muscle atrophy in the context of stroke remain unclear.
View Article and Find Full Text PDFAging Dis
December 2024
Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
The negative effects of particulate matter up to 2.5 μm in diameter (PM) and their mediating mechanisms have been studied in various tissues. However, little is known about the mechanism and long-term tracking underlying the sex-dependent effects of PM on skeletal muscle system modulation.
View Article and Find Full Text PDFAging Dis
December 2024
School of Athletic Performance, Shanghai University of Sport, Shanghai, China.
Skeletal muscle dysfunction (SMD), one of the extrapulmonary complications in patients with chronic obstructive pulmonary disease (COPD), considerably influences patient prognosis. Mitochondria regulates their dynamic networks through a mitochondria quality control (MQC) mechanism, involving mitochondrial biogenesis, mitochondrial dynamics, and mitophagy. The MQC is crucial for mitochondrial homeostasis and health, and disruption of it can lead to mitochondrial damage, which is a key factor in the structural and functional impairment of skeletal muscle in COPD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!