Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The kinase FLT3 internal tandem duplication (FLT3-ITD) is related to poor clinical outcomes of acute myeloid leukemia (AML). FLT3 inhibitors have provided novel strategies for the treatment of FLT3-ITD-positive AML. But they are limited by rapid development of acquired resistance and refractory in monotherapy. Recent evidence shows that inducing the degradation of FLT3-mutated protein is an attractive strategy for the treatment of FLT3-ITD-positive AML, especially those with FLT3 inhibitor resistance. In this study we identified Wu-5 as a novel USP10 inhibitor inducing the degradation of FLT3-mutated protein. We showed that Wu-5 selectively inhibited the viability of FLT3 inhibitor-sensitive (MV4-11, Molm13) and -resistant (MV4-11R) FLT3-ITD-positive AML cells with IC of 3.794, 5.056, and 8.386 μM, respectively. Wu-5 (1-10 μM) dose-dependently induced apoptosis of MV4-11, Molm13, and MV4-11R cells through the proteasome-mediated degradation of FLT3-ITD. We further demonstrated that Wu-5 directly interacted with and inactivated USP10, the deubiquitinase for FLT3-ITD in vitro (IC value = 8.3 µM) and in FLT3-ITD-positive AML cells. Overexpression of USP10 abrogated Wu-5-induced FLT3-ITD degradation and cell death. Also, the combined treatment of Wu-5 and crenolanib produced synergistic cell death in FLT3-ITD-positive cells via the reduction of both FLT3 and AMPKα proteins. In support of this, AMPKα inhibitor compound C synergistically enhanced the anti-leukemia effect of crenolanib, while AMPKα activator metformin inhibited the anti-leukemia effect of crenolanib. In summary, we demonstrate that Wu-5, a novel USP10 inhibitor, can overcome FLT3 inhibitor resistance and synergistically enhance the anti-AML effect of crenolanib through targeting FLT3 and AMPKα pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115260 | PMC |
http://dx.doi.org/10.1038/s41401-020-0455-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!