Mechanically driven strategies to improve electromechanical behaviour of printed stretchable electronic systems.

Sci Rep

Faculty of Information Technology and Communication Sciences, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland.

Published: July 2020

Stretchable electronics promise to extend the application range of conventional electronics by enabling them to keep their electrical functionalities under system deformation. Within this framework, development of printable silver-polymer composite inks is making possible to realize several of the expected applications for stretchable electronics, which range from seamless sensors for human body measurement (e.g. health patches) to conformable injection moulded structural electronics. However, small rigid electric components are often incorporated in these devices to ensure functionality. Under mechanical loading, these rigid elements cause strain concentrations and a general deterioration of the system's electrical performance. This work focuses on different strategies to improve electromechanical performance by investigating the deformation behaviour of soft electronic systems comprising rigid devices through Finite Element analyses. Based on the deformation behaviour of a simple stretchable device under tensile loading, three general strategies were proposed: local component encapsulation, direct component shielding, and strain dispersion. The FE behaviour achieved using these strategies was then compared with the experimental results obtained for each design, highlighting the reasons for their different resistance build-up. Furthermore, crack formation in the conductive tracks was analysed under loading to highlight its link with the evolution of the system electrical performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374727PMC
http://dx.doi.org/10.1038/s41598-020-68871-wDOI Listing

Publication Analysis

Top Keywords

strategies improve
8
improve electromechanical
8
electronic systems
8
stretchable electronics
8
electrical performance
8
deformation behaviour
8
mechanically driven
4
strategies
4
driven strategies
4
behaviour
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!