Au-silica core-shell nanoparticles have been irradiated with 20 keV He ions up to a maximum fluence of 4.7 × 10 ions/cm. The nanoscale structural and crystallographic evolution induced by He ion irradiation was followed at various stages using Transmission Electron Microscopy (TEM). During irradiation satellite Au clusters are formed around the main Au core, which remained crystalline even after the maximum He ion fluence. The spherical silica shell deformed into a hemisphere due to He ion irradiation. Three dimensional Monte-Carlo simulations, based on the binary collision approximation, have been performed on stacked infinite layers and an individual particle. The stacked layers results show that the He beam interacts with most of the nanoparticle and Au migrates in the direction of beam incidence agreeing with experimental findings. The individual particle results match the experiment in terms of the volume which is sputtered away however additional mechanisms, not included in the simulations, are present in the experiment during the satellite formation and silica shell deformation. These results show the ability for 20 keV He ions to be used for the modification of nanostructures. Furthermore, these results contribute to a quantitative understanding of the dynamic evolution of materials observed using microscopy techniques based on He ions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374165 | PMC |
http://dx.doi.org/10.1038/s41598-020-68955-7 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFGreen Chem
January 2025
Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK.
Development of sustainable synthesis methods of organic electrode materials (OEMs) for sodium (Na)-ion batteries must take hold rapidly in large scale-synthesis if subsequent commercialisation is to occur. We report a facile and rapid gram-scale synthesis method based on microwave irradiation for disodium naphthalene-2,6-dicarboxylate (Na-NDC) and mono/disodium benzene-1,4-dicarboxylate (Na-BDC) as model compounds. Phase purity and formation of materials was confirmed by various characterisation techniques.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Food Science and Biotechnology, Gachon University 1342 Seongnamdaero Sujeong-gu Seongnam-si 13120 Republic of Korea
This study focuses on the synthesis, characterization, and evaluation of the photocatalytic efficiency of bismuth-based metal-organic frameworks (Bi-MOFs) and their derivatives, specifically Ag/Bi-MOF and NH /Ag/Bi-MOF, in the degradation of tetracycline (TC) and sulfamethoxazole (SMX) under visible light irradiation. Bi-MOFs are promising photocatalysts due to their large surface area, tunable porosity, and unique electronic properties that are favorable for visible light absorption. In this study, Bi-MOFs were synthesized using a solvothermal method, with the incorporation of silver (Ag) and ammonium (NH ) ions to enhance their photocatalytic performance.
View Article and Find Full Text PDFJ Environ Sci Health B
January 2025
Department of Chemistry and Chemical Engineering, Shenyang Institute of Science and Technology, Shenyang, China.
The widespread use of antibiotics has led to significant water pollution. Photocatalysis can effectively degrade antibiotics, but the performance is greatly limited by the photogenerated carrier recombination in the photocatalytic material g-CN. Constructing heterojunctions can enhance interfacial charge transfer, leading to more stable and efficient photocatalysis.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Orthopedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
Background: Chordoma is a slow-growing, primary malignant bone tumor that arises from notochordal tissue in the midline of the axial skeleton. Surgical excision with negative margins is the mainstay of treatment, but high local recurrence rates are reported even with negative margins. High-dose radiation therapy (RT), such as with proton or carbon ions, has been used as an alternative to surgery, but late local failure remains a problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!