Introduction: Although hypothermia is independently associated with an increased mortality in trauma patients, it might be an effective therapeutic approach for otherwise lethal hemorrhage. The effect of hypothermia on microcirculation, however, has been poorly studied in this setting. Our goal was to characterize the effects of hypothermia on microcirculation in normal conditions and in severe hemorrhagic shock.

Methods: In anesthetized and mechanically ventilated sheep, we measured cardiac output (CO), renal blood flow (RBF), and systemic and renal O2 consumption (VO2). Cortical renal, intestinal villi, and sublingual microcirculation was assessed by IDF-videomicroscopy. After basal measurements, sheep were assigned to hypothermia (n = 12) and normothermia (n = 12) groups. Central temperature was reduced to ∼34°C and maintained at baseline in each group, respectively. Measurements were repeated after 1 h of hemodynamic stable conditions and 1 h of severe hemorrhagic shock.

Results: In conditions of hemodynamic stability, the hypothermia group showed lower CO, RBF, and systemic and renal VO2 than the normothermia group. Red blood cell velocity was also lower in renal, villi, and sublingual microvascular beds (836 ± 195 vs. 1,066 ± 162, 916 ± 105 vs. 1051 ± 41, and 970 ± 182 vs. 1,102 ± 49 μm/s, respectively; P < 0.0001 for all). In hemorrhagic shock, most of the microvascular variables were similarly compromised in both the groups. In hypo- and normothermia groups, the percentage of reduction in perfused vascular density was higher in renal than in intestinal and sublingual microcirculation (66 ± 31 vs. 31 ± 23 and 15 ± 15%, and 78 ± 26 vs. 32 ± 37 and 18 ± 21%, P < 0.01 for both).

Conclusions: This is the first experimental study assessing the effect of systemic hypothermia on microcirculation in severe hemorrhagic shock. The main finding was that hypothermia did not hamper additionally the microcirculatory derangements induced by hemorrhagic shock. In addition, renal microcirculation was more susceptible to hemorrhagic shock than villi and sublingual microcirculation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0000000000001616DOI Listing

Publication Analysis

Top Keywords

hypothermia microcirculation
12
conditions hemodynamic
8
hemodynamic stability
8
conditions severe
8
severe hemorrhagic
8
rbf systemic
8
systemic renal
8
villi sublingual
8
hypothermia
6
renal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!