HslUV is a bacterial heat shock protein complex consisting of the AAA+ ATPase component HslU and the protease component HslV. HslV is a threonine (Thr) protease employing the N-terminal Thr residue in the mature protein as the catalytic residue. To date, HslUV from Gram-negative bacteria has been extensively studied. However, the mechanisms of action and activation of HslUV from Gram-positive bacteria, which have an additional N-terminal sequence before the catalytic Thr residue, remain to be revealed. In this study, we determined the crystal structures of HslV from the Gram-positive bacterium with and without HslU in the crystallization conditions. The structural comparison suggested that a structural transition to the symmetric form of HslV was triggered by ATP-bound HslU. More importantly, the additional N-terminal sequence was cleaved in the presence of HslU and ATP, exposing the Thr9 residue at the N-terminus and activating the ATP-dependent protease activity. Further biochemical studies demonstrated that the exposed N-terminal Thr residue is critical for catalysis with binding to the symmetric HslU hexamer. Since eukaryotic proteasomes have a similar additional N-terminal sequence, our results will improve our understanding of the common molecular mechanisms for the activation of proteasomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468587 | PMC |
http://dx.doi.org/10.14348/molcells.2020.0074 | DOI Listing |
Int J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
The synthesis of highly efficient and environmentally friendly flame retardants through the synergistic interaction of boron, phosphorus and nitrogen is becoming a new research direction. In this study, N-DBSPA, a flame retardant with high flame retardancy, high thermal stability and high efficiency, was prepared by the reaction between pentaerythritol borate and amino trimethylene phosphate, and the limiting oxygen index (LOI) of the modified cotton fabric increased from 18 % to 44.7 % at a weight gain (WG) of 20.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
is a rich source of bioactive molecules and thrives in Mediterranean and desert climate regions worldwide. In this study, methanolic HPLC fractions were evaluated for bioactive compounds and PBP2a transpeptidase inhibitors against methicillin-resistant (MRSE). Among the collected HPLC fractions, F02 of the methanol extract demonstrated potential activity against MRSE01 (15 ± 0.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Lab of Clean Energy and Green Circulation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China.
Lipoteichoic acid synthase (LtaS) is crucial for the biosynthesis of lipoteichoic acid (LTA) in lactic acid bacteria (LAB), where LTA plays a key role in bacterial adhesion, immune modulation, and maintaining cell integrity. This study explores the regulation of LtaS activity in , examining the effects of factors such as temperature, pH, and metal ions on enzyme activity. Molecular docking was used to identify critical amino acids at the enzyme's active site, and site-directed mutagenesis confirmed the role of five key residues (Glu-259, Thr-303, Asn-353, Arg-360, and His-420) in LtaS activity.
View Article and Find Full Text PDFChemMedChem
January 2025
Université de Montpellier: Universite de Montpellier, IBMM, Pôle Chimie Balard, Campus CNRS, 34093, Montpellier, FRANCE.
After more than 15 years of decline, the Malaria epidemy has increased again since 2017, reinforcing the need to identify drug candidates active on new targets involved in at least two biological stages of the Plasmodium life cycle. The SUB1 protease, which is essential for parasite egress in both hepatic and blood stages, would meet these criteria. We previously reported the structure-activity relationship analysis of α-ketoamide-containing inhibitors encompassing positions P4-P2'.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
The structural groups of 2-oxindole and tricyclic 3a-hydroxy-hexahydropyrrolo-[2,3-]indole (HO-HPI) are important pharmacophores. Chemical synthesis of complex alkaloids containing a 2-oxindole or HO-HPI moiety, especially the latter one, has been a long-standing challenge. Herein, we characterized the P450 enzyme AfnD, and its homologue proteins, HmtT, ClpD, KtzM, and LtzR, as cyclopeptide 2-oxindole and HO-HPI monooxygenases (cpOPMOs) that could introduce a 2-oxindole or HO-HPI moiety into the tryptophan-containing cyclopeptides in a pH-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!