is implicated in accelerating colorectal cancer (CRC) and is found within metastatic CRC cells in patient biopsies. Here, we found that bacterial invasion of CRC cells and cocultured immune cells induced a differential cytokine secretion that may contribute to CRC metastasis. We used a modified galactose kinase markerless gene deletion approach and found that invaded cultured HCT116 CRC cells through the bacterial surface adhesin Fap2. In turn, Fap2-dependent invasion induced the secretion of the proinflammatory cytokines IL-8 and CXCL1, which are associated with CRC progression and promoted HCT116 cell migration. Conditioned medium from -infected HCT116 cells caused naïve cells to migrate, which was blocked by depleting CXCL1 and IL-8 from the conditioned medium. Cytokine secretion from HCT116 cells and cellular migration were attenuated by inhibiting host-cell binding and entry using galactose sugars, l-arginine, neutralizing membrane protein antibodies, or deletion. also induces the mobilization of immune cells in the tumor microenvironment. However, in neutrophils and macrophages, the bacterial-induced secretion of cytokines was Fap2 independent. Thus, our findings show that both directly and indirectly modulates immune and cancer cell signaling and migration. Because increased IL-8 and CXCL1 production in tumors is associated with increased metastatic potential and cell seeding, poor prognosis, and enhanced recruitment of tumor-associated macrophages and fibroblasts, we propose that inhibition of host-cell binding and invasion, potentially through vaccination or novel galactoside compounds, could be an effective strategy for reducing -associated CRC metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7454160 | PMC |
http://dx.doi.org/10.1126/scisignal.aba9157 | DOI Listing |
Curr Microbiol
January 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
Remodelling regulatory pathways to directionally increase the efficiency of specific promoters in chassis cells is an effective strategy for the rational construction of expression systems. However, the repeated utilization of one regulator to modify the host cell to improve expression motif efficiency has a limited effect. Therefore, it is preferable to identify new regulatory factors to activate specific pathways and thus further improve the efficiency of target elements.
View Article and Find Full Text PDFSaudi Med J
January 2025
From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.
Objectives: To investigate the phytochemical composition of Ajwa date extract and evaluate its antiviral activity and mechanism of action.
Methods: High perfomance liquid chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry were used to analyze the phytochemical profile of Ajwa date extract. The antiviral activity was assessed using the MTT colorimetric assay against herpes simplex virus type I (HSV-I) and coxsackievirus B4 (CVB-4).
Lett Appl Microbiol
January 2025
Laboratory for Chemical, Galenic and Pharmacological Development of Drugs (LR12ES09), Faculty of Pharmacy of Monastir, University of Monastir, Tunisia.
Brown seaweeds are known for their bioactive compounds, particularly sulfated polysaccharides such as fucoidans, which have demonstrated antiviral properties. However, limited studies have focused on the antiviral potential of fucoidans extracted from Mediterranean brown seaweeds. In this study, two brown seaweeds Padina pavonica and Dictyopteris membranacea (Fuc-Pad and Fuc-Dic) were collected from monastir coasts, Tunisia, and a specific extraction protocol was employed to obtain fucoidans.
View Article and Find Full Text PDFPLoS One
January 2025
Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh.
The rare zoonotic Borna disease virus (BDV) causes fatal neurological disease in various animals, with a high mortality rate exceeding 90% in central Europe. However, unlike most viruses, it establishes persistent infections within the host cell nucleus, hindering treatment. As successful BDV treatments remain elusive, the researchers turned to a computational approach, utilizing molecular docking, ADME/T, post-docking MMGBSA, MD simulation, DCCM, and PCA to identify promising phytochemical drug candidates targeting the BDV Nucleoprotein (PDB ID: 1N93).
View Article and Find Full Text PDFJ Virol
January 2025
Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China.
Unlabelled: Platelet factor 4 (PF4) has been shown to regulate several viral infections. Our previous study demonstrated that PF4 inhibits the entry of enterovirus A 71 (EV71) and coxsackievirus A16 (CA16), which cause hand, foot, and mouth disease (HFMD). In this study, we report that PF4 also inhibits the circulating HFMD pathogen coxsackievirus A6 (CA6) and the re-emerging enterovirus D68 (EVD68).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!