Human islet amyloid polypeptide (hIAPP, also known as amylin) is a co-secreting protein of insulin in human pancreatic β-cells. It is encapsulated in vesicles and secreted out of the cells with insulin. hIAPP can promote insulin secretion and regulate blood glucose homeostasis in the body under the normal physiological conditions. However, hIAPP misfolding or excessive accumulation can cause toxic effects on the β cells, which in turn affect cell function, resulting in type 2 diabetes mellitus (T2DM) for the affected individuals. In order to eliminate the excessive accumulation of hIAPP in the cell and to maintain its normal synthetic function, we have adopted a new protein degradation technology called Trim-Away, which can degrade the target protein in a short time without affecting the mRNA transcription and translation synthesis function of the target protein. First, we overexpressed hIAPP in the rat insulinoma cells (INS1) to simulate its excessive accumulation and analyzed its effect in INS1 cells by measuring the release of LDH (lactate dehydrogenase), CCK8 activity and PI-Annexin V positive ratio. Results showed that excessive accumulation of hIAPP caused β cell apoptosis. Second, real-time quantitative PCR analysis and ELISA detection showed that the synthesis and secretion of insulin were hindered. We used Trim-Way technology to specifically eliminate the excessive accumulation of hIAPP protein in hIAPP overexpressing INS1 cells. Cell activity experiments confirmed that clearance of hIAPP reduced the cell death phenotype. Further ELISA experiments confirmed that INS1 cells restored insulin secretion ability. This study examined the toxic effect of hIAPP excessive accumulation in INS1 cells and demonstrated the cytotoxicity clearance effect of Trim-Way technology in pancreatic β-cells. Our research has provided a new strategy for using Trim-Away technology for treatment of diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.16288/j.yczz.20-061DOI Listing

Publication Analysis

Top Keywords

excessive accumulation
24
ins1 cells
16
accumulation hiapp
12
hiapp
10
human islet
8
islet amyloid
8
amyloid polypeptide
8
pancreatic β-cells
8
insulin secretion
8
eliminate excessive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!