Characteristics of lipid droplets and the expression of proteins involved in lipolysis in the murine cervix during mid-pregnancy.

Reprod Fertil Dev

College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China; and Corresponding author. Email:

Published: July 2020

Lipid droplets (LDs) are reservoirs of arachidonoyl lipids for prostaglandin (PG) E2 synthesis, and progesterone can stimulate PGE2 synthesis; however, the relationship between progesterone and LD metabolism in the murine cervix remains unclear. In the present study we examined LD distribution and changes in the expression of proteins involved in lipolysis and autophagy in the murine cervix during pregnancy, and compared the findings with those in dioestrous mice. During mid-pregnancy, LDs were predominantly distributed in the cervical epithelium. Electron microscopy revealed the transfer of numerous LDs from the basal to apical region in the luminal epithelium, marked catabolism of LDs, an elevated number of LDs and autophagosomes and a higher LD:mitochondrion size ratio in murine cervical epithelial cells (P<0.05). In addition, immunohistochemical and western blotting analyses showed significantly higher cAMP-dependent protein kinase, adipose triglyceride lipase and hormone-sensitive lipase expression, and a higher light chain 3 (LC3) II:LC3I ratio in the stroma and smooth muscles and, particularly, in murine cervical epithelial cells, during mid-pregnancy than late dioestrus. In conclusion, these results suggest that the enhanced lipolysis of LDs and autophagy in murine cervical tissues were closely related to pregnancy and were possibly controlled by progesterone because LD catabolism may be necessary for energy provision and PGE2 synthesis to maintain a closed pregnant cervix.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD19425DOI Listing

Publication Analysis

Top Keywords

murine cervix
12
lipid droplets
8
expression proteins
8
proteins involved
8
involved lipolysis
8
lds
5
characteristics lipid
4
droplets expression
4
murine
4
lipolysis murine
4

Similar Publications

Reproductive success requires accurately timed remodeling of the cervix to orchestrate the maintenance of pregnancy, the process of labor, and birth. Prior work in mice established that a combination of continuous turnover of fibrillar collagen and reduced formation of collagen cross-links allows for the gradual increase in tissue compliance and delivery of the fetus during labor. However, the mechanism for continuous collagen degradation to ensure turnover during cervical remodeling is still unknown.

View Article and Find Full Text PDF

Background: A precise observation is that the cervix's solid tumors possess hypoxic regions where the oxygen concentration drops below 1.5%. Hypoxia negatively impacts the host's immune system and significantly diminishes the effectiveness of several treatments, including radiotherapy and chemotherapy.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Cervical cancer is the second most common cancer in Indonesia, where traditional herbal treatments like <i>Zanthoxylum acanthopodium</i> (andaliman) are culturally used. Investigating protein biomarkers such as E7, pRb, EGFR and p16 can help assess the efficacy of these treatments. <b>Materials and Methods:</b> There were 5 groups in this study: 2 control groups (C- and C+) and 3 treatment groups (each receiving one of three doses).

View Article and Find Full Text PDF

The orientation and function of smooth muscle in the cervix may contribute to the important biomechanical properties that change during pregnancy. Thus, this study examined the three-dimensional structure, smooth muscle phenotype, and mechanical and contractile functions of the upper and lower cervix of nongravid (not pregnant) and gravid (pregnant) mice. In gravid cervix, we uncovered region-specific changes in the structure and organization of fiber tracts.

View Article and Find Full Text PDF

Introduction/aims: VAChT-Cre is a transgenic mouse line targeting slow-twitch fatigue-resistant and fast-twitch fatigue-resistant motor neurons that innervate oxidative type I and type IIa muscle fibers. To ablate these neurons, VAChT-Cre mice were crossbred with NSE-DTA mice, leading to the expression of diphtheria toxin A after Cre-mediated excision. The resulting VAChT-Cre;NSE-DTA mice exhibited motor deficits, abnormal locomotion, muscular atrophy, and tremor, making them a useful model for studying motor neuron physiology and pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!