Dengue is hyper-endemic in Singapore and Malaysia, and daily movement rates between the two countries are consistently high, allowing inference on the role of local transmission and imported dengue cases. This paper describes a custom built sparse space-time autoregressive (SSTAR) model to infer and forecast contemporaneous and future dengue transmission patterns in Singapore and 16 administrative regions within Malaysia, taking into account connectivity and geographical adjacency between regions as well as climatic factors. A modification to forecast impulse responses is developed for the case of the SSTAR and is used to simulate changes in dengue transmission in neighbouring regions following a disturbance. The results indicate that there are long-term responses of the neighbouring regions to shocks in a region. By computation of variable inclusion probabilities, we found that each region's own past counts were important to describe contemporaneous case counts. In 15 out of 16 regions, other regions case counts were important to describe contemporaneous case counts even after controlling for past local dengue transmissions and exogenous factors. Leave-one-region-out analysis using SSTAR showed that dengue transmission counts could be reconstructed for 13 of 16 regions' counts using external dengue transmissions compared to a climate only approach. Lastly, one to four week ahead forecasts from the SSTAR were more accurate than baseline univariate autoregressions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423435 | PMC |
http://dx.doi.org/10.1098/rsif.2020.0340 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.
Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, Porto, 4050 - 600, Portugal.
Background: The incidence of mosquito-borne infections has increased worldwide. Mainland Portugal's characteristics might favour the (re)emergence of mosquito-borne diseases. This study aimed to characterize the spatial distribution of vectors and notification rates of imported cases of mosquito-borne infections in mainland Portugal and demarcate the areas where these geographies overlap.
View Article and Find Full Text PDFGerms
September 2024
MD, MPH, PhD, Department of Public Health, Faculty of Medicine, Universitas Islam Indonesia, Kaliurang Street KM 14.5 Yogyakarta 55584, Indonesia.
Introduction: Dengue infection poses a serious threat to global public health, including Indonesia. The rapid spread and significant economic impact are crucial concerns for control efforts. Investigating risk factors of dengue virus infection is necessary to formulate effective strategies, particularly at the household level.
View Article and Find Full Text PDFViruses
November 2024
Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Rome, Italy.
Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!